Skip to main content

Estimating Quality of Support Vector Machines Learning under Probabilistic and Interval Uncertainty: Algorithms and Computational Complexity

  • Chapter
Interval / Probabilistic Uncertainty and Non-Classical Logics

Part of the book series: Advances in Soft Computing ((AINSC,volume 46))

  • 659 Accesses

Summary

Support Vector Machines (SVM) is one of the most widely used technique in machines leaning. After the SVM algorithms process the data and produce some classification, it is desirable to learn how well this classification fits the data. There exist several measures of fit, among them the most widely used is kernel target alignment. These measures, however, assume that the data are known exactly. In reality, whether the data points come from measurements or from expert estimates, they are only known with uncertainty. As a result, even if we know that the classification perfectly fits the nominal data, this same classification can be a bad fit for the actual values (which are somewhat different from the nominal ones). In this paper, we show how to take this uncertainty into account when estimating the quality of the resulting classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cristianini, N., et al.: On kernel-target alignment. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, MIT Press, Cambridge, Massachusetts (2002)

    Google Scholar 

  2. Ferson, S., et al.: Computing variance for interval data is NP-hard. SIGACT News 33(2), 108–118 (2002)

    Article  Google Scholar 

  3. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory of NP-Completeness. WH Freeman and Company, San Francisco, California (1979)

    MATH  Google Scholar 

  4. Kreinovich, V., et al.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1997)

    Google Scholar 

  5. Kreinovich, V., et al.: Interval versions of statistical techniques, with applications to environmental analysis, bioinformatics, and privacy in statistical databases. Journal of Computational and Applied Mathematics 199, 418–423 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jaulin, L., et al.: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, London (2001)

    MATH  Google Scholar 

  7. Nguyen, C.H., Ho, T.B.: Kernel matrix evaluation. In: Manuela, M., Veloso, M.M. (eds.) Proceedings of the 20th International Joint Conference on Artificial Intelligence IJCAI 2007, Hyderabad, India, January 6–12, 2007, pp. 987–992 (2007)

    Google Scholar 

  8. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications, Inc., Mineola, New York (1998)

    MATH  Google Scholar 

  9. Rabinovich, S.G.: Measurement Errors and Uncertainty. Theory and Practice. Springer, Berlin (2005)

    Google Scholar 

  10. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge, Massachusetts (2002)

    Google Scholar 

  11. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    Google Scholar 

  12. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  13. Wang, L., Chan, K.L.: Learning kernel parameters by using class separability measure. In: NIPS’s Sixth Kernel Machines Workshop, Whistler, Canada (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Van-Nam Huynh Yoshiteru Nakamori Hiroakira Ono Jonathan Lawry Vkladik Kreinovich Hung T. Nguyen

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, C.H., Ho, T.B., Kreinovich, V. (2008). Estimating Quality of Support Vector Machines Learning under Probabilistic and Interval Uncertainty: Algorithms and Computational Complexity. In: Huynh, VN., Nakamori, Y., Ono, H., Lawry, J., Kreinovich, V., Nguyen, H.T. (eds) Interval / Probabilistic Uncertainty and Non-Classical Logics. Advances in Soft Computing, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77664-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77664-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77663-5

  • Online ISBN: 978-3-540-77664-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics