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Abstract. Storing and disseminating coded information instead of theoriginal
data can bring significant performance improvements to sensor network proto-
cols. Such methods reduce the risk of having some data replicated at many nodes,
whereas other data is very scarce. This is of particular importance for data per-
sistence in sensor networks. While coding is generally beneficial, coding over
all available packets can be detrimental to performance, since coded information
might not be decodable after a network failure. In this paperwe investigate the
suitability of different codeword degree distributions with respect to the dynamics
of the underlying wireless network and design a corresponding data management
algorithm. We further propose a simple buffer management scheme for continu-
ous data gathering. The performance of the protocols is demonstrated by means
of simulation, as well as experiments with an implementation on MICAz motes.

1 Introduction

Data collection is the primary task of a wireless sensor network. To this end, the
sensed data has to be transported to the sink node(s) or should be stored within the
network in case no sink node is currently available. Due to the power and memory
constraints of the sensor nodes, this has to be done as efficiently as possible. Network
coding [1] was shown to provide significant benefits in such networks. Several papers
have analyzed the benefits of random network coding [2] for information dissemination
and data persistence [3] (the amount of information that canbe decoded at any give
time). These methods reduce the risk of having some data replicated at many nodes,
whereas other data is very scarce (in analogy to the coupon collector’s problem [4]).
The robustness that can be achieved through the diversity ofavailable information by
coding at intermediate nodes can be crucial in sensor networks, where node failures
may be common.

While coding is generally beneficial, coding over all available packets might leave
coded information undecodable after a network failure, thus reducing data persistence.
Algorithms such as Growth Codes (GC) [5], a variant of LT codes [6], address this is-
sue by using low complexity coding algorithms together witha code degree distribution
that maximizes data persistence. These concepts are generalized in [7], considering cod-
ing over multiple snapshots of data and more general random mixed coding schemes.
Growth Codes are designed for networks where the information available at neigh-
boring nodes is uncorrelated, i.e., very sparse networks with a topology that changes
significantly from one transmission to the next.



In this paper we investigate the suitability of different codeword degree distributions
with respect to the dynamics of the underlying wireless network. In particular, we also
investigate more static settings than those analyzed in previous research and discuss
their implications on the optimum degree distribution. We then design a corresponding
data dissemination algorithm that works well over a wide range of different network
scenarios. To allow autonomous operation over an extended period of time in the face
of a small amount of available RAM, nodes usually use their on-board flash memory.
Since writing to (and to a lesser degree also reading from) the flash is very energy
consuming, the coding algorithm has to make sure that the data required for encoding
and decoding is available in RAM, and only data that is unlikely to be used again in the
near future is written to the flash. We propose a simple buffermanagement scheme that
allows for continuous data gathering, without using an excessive amount of writes to
the flash memory.

The protocol is implemented on the MICAz mote platform. We perform a range of
experiments to demonstrate its performance and compare it to previously proposed so-
lutions. We further use simulation to investigate the scalability of the proposed approach
in larger networks.

The paper is structured as follows. In Section 2 we review related work. Section 3
gives a brief overview of network coding. In Section 4 we present our novel algorithm
based on network coding, analyzing suitable degree distributions for coding. Section 5
provides detailed simulation and experimental results on real sensor nodes for the dif-
ferent coding algorithms and degree distributions. In Section 6 we present a buffer
management scheme to handle multiple temporal generationsof data and Section 7
concludes the paper.

2 Related Work

The usefulness of network coding for data storage was investigated in [3], where the
authors showed that a simple distribution scheme using network coding and only based
on local information can perform almost as well as the case where there is complete
coordination among nodes. Similar considerations also apply to sensor networks.

Growth Codes [5] were specifically designed to enhance data persistence, i.e., to
maximize the amount of information that can be decoded at anytime instant. Sensor
nodes send out codewords that can be coded over multiple original information units.
Nodes exchange codewords with their neighbors and combine received codewords with
the existing local information, such that the stored information is coded over more and
more information units over time.

The number of original information units a stored codeword is coded over is referred
to as codeword degree. The authors in [5] propose to gradually increase the codeword
degree with the amount of received information, hence the name “Growth Codes”. This
codeword degree distribution optimizes sensor network data persistence in the presence
of node failures, as it allows to decode the joint information of any subset of nodes with
high probability. Intuitively, a high degree increases theprobability that transmissions
are innovative in that they bring new information to neighbors, while a low degree in-
creases the probability that the information can be decodedimmediately upon reception,



thus decreasing the likelihood that nodes will be left with undecodable information in
case parts of the sensor network fail. As mentioned in the introduction, Growth Codes
work well in case the information available at neighboring nodes is uncorrelated. As
shown in [8], performance degrades in less dynamic situations, which are more likely
to be found in sensor networks scenarios.

An extension of the Growth Codes work is described in [7], where the problem
of collecting multi-snapshots spatial data in a resource constrained sensor network is
addressed. Starting from [5], which provides an example of single snapshot data collec-
tion, the authors of [7] combine coding and scheduling to maximize the system’s utility.
They implement two algorithms, with and without mixing the snapshots, where only in
the latter case a schedule is needed to improve the total utility gain. The scheduling
problem is modeled through the Multi-Armed Bandit theory and solved optimally us-
ing Gittins Indices. They also demonstrate that there exists an optimal degree for the
snapshots-mixed coding, which achieves maximum utility gain and data persistence.

We observe that without coding, data collection becomes equivalent to a coupon col-
lector problem [9] which takesO(N log N) coupons (symbols) for recovering theN
original symbols. Existing coding techniques help avoiding the related heavy tail collec-
tor effect. However, channel codes such as LT Codes [6] and Reed-Solomon Codes [10]
start decoding only after accumulating a large number of received packets, which is not
suitable for resource constrained sensor nodes (due to, e.g., limited memory) and for
data persistence. Persistence and reliability of cached data can be improved through
Fountain Codes, as shown in [11]. The authors use Belief Propagation (BP) for a low
decoding complexity. Random walks are used to disseminate coded data in a scalable
way. The paper is related to our work, addressing the problemof data persistence when
sinks are not available, but it uses the Robust Soliton degree distribution, which limits
the range of applicable scenarios. Close to this work, [12] proposes a decentralized im-
plementation of fountain codes. Erasure codes lead to reduced communication, storage
and computational cost over random linear coding. One main drawback is to consider
only one data packet stored in each node, and then multipliedin loco with incoming new
symbols, which wastes the capability of the sensor nodes andincreases rapidly code-
word degrees without taking into account the network topology. Another drawback is
the data dissemination process via pre-routing, in particular geographic routing, which
requires each node to know its own location. Pre-routing is the process by which each
node, before the data collection can take place, routes its data packet tod randomly se-
lected nodes, which will be XORing what they receive. In [13], the authors extend this
approach by showing that if these conditions are slightly relaxed, a constant pre-routing
degree suffices.

The main difference of our work with respect to previous research is that we specif-
ically analyze codeword degree distributions providing a high degree of resilience to
node/network failures for a much wider range of scenarios (than, e.g., in [5]). In ad-
dition, we present a thorough discussion on the degree distributions that work well,
designing a full data dissemination algorithm, which we complete with a buffer man-
agement scheme. Finally, we provide a performance analysisthrough experiments with
a real-world implementation of the algorithm on sensor motes.



3 Network Coding

With network coding, nodes transmit packets coded over multiple original packets,
instead of uncoded data. Coded packets can contain information from many different
data sources. For coding, sets ofs consecutive bits of a packet are treated as a sym-
bol over the Galois fieldGF (q), with q = 2s, and anL bits long packet consists of
L/s symbols. Note that coded packets have the same length as uncoded data packets.
Due to its simplicity, usuallylinear network coding is used, where packets are linear
combinations of the original packets.

For random linear network coding, a packetY coded over the original packets
X1, ..., Xn is generated by multiplying each with a random coding coefficient gi to
obtainY =

∑n

i=1
giX

i. This is done individually for each symbol in the data packet. It
is not necessary to first decode received data in order to create new coded packets, but
the same operations can be applied recursively to already coded data.

Decoding requires knowledge of the coding coefficients. Forsimplicity, assume that
a packet contains both the coefficientsg = (g1, ..., gn) and the encoded data [14]. As-
sume a node has received(g1, Y 1), ..., (gm, Y m). Decoding requires solving the system
of equations{Y j =

∑n

i=1
gj

i X
i} to retrieve the originalX i. In casem ≥ n andn of

the equations are linearly independent, all data can be recovered.
The special caseGF (2) with a field size of2 is very appealing for sensor net-

works since it only requires addition over a finite field (which corresponds to a simple
xor) and no multiplication. Also the coding coefficients are only a single bit which
reduces overhead and decoding complexity. Different algorithms are suitable for de-
coding. Network coding schemes often use Gaussian elimination to invert the matrix
of coding coefficients, but also methods with lower computational complexity (e.g.,
message passing [6]) can be effectively used in some cases.

To cope with the limited node memory, it is necessary to limitn, the number of
packets that can be coded over at the same time. Packets are grouped into genera-
tions [14], and only packets from the same generation can be combined in the encoding
process.

4 Coding Degree Distributions for Static and Mobile Networks

4.1 Description of the Algorithm

In this section we present a novel network coding (NC) algorithm, calledadaptive
network coding(ANC). In contrast to previous schemes ANC uses specific degree dis-
tributions (specified in detail later) in order to adapt its behavior to the type of mobility
in the network. Each node has a buffer of limited and known size, which should be how-
ever larger than the size of the current generation (i.e., ofthe number of packets that
are to be processed together and eventually distributed to all nodes). This buffer may
contain encoded as well as original information packets, which may be combined to
produce additional encoded packets through random linear coding. Whenever a trans-
mission opportunity occurs, NC schemes usually (see, e.g.,[15]) code over all packets
in the buffer. We however advocate that coding overall available linearly independent



packets (maximum degree encoding) at all times is not alwaysoptimal in terms of per-
formance. This was observed in [5], where the authors showedthat depending on the
number of decoded orrecoveredpacketsr at a specific node there exists an optimal
number of packets to combine to get close to optimal performance in terms of number
of decodable packets at each instant in time. The optimum degree distribution however
depends on the dynamics of the underlying network and in [8] the authors show the
deficiencies of Growth Codes in scenarios other than the veryspecific one they were
designed for.

In this section, we design suitable network coding algorithms based on our findings
on the impact of network dynamics such as node mobility and channel conditions. We
use the following definitions. Thepacket degreeis the number of original information
packets which are combined together to form a packet. The degree distribution gives
the degree that a packet to be sent should have to give maximumperformance under
certain network conditions: ifr is the number of packets recovered at a given node, the
degree distribution returnsD(r), i.e., the degree of the next output packet.1

We further say that a transmission opportunity for a node occurs when this node is
selected for transmitting a new encoded packet. The actual transmission schedule is not
specified in detail here and could be, e.g., either TDMA basedor event based. In the for-
mer case, a distributed or centralized TDMA schedule is assumed, whereas in the latter
a new encoded packet is usually sent as the node receives innovative information from
its neighbors (see [15]). An example of a fully distributed approach for the selection of
transmission schedules can be found in [16], where the authors propose Proactive Net-
work Coding (ProNC). According to this strategy, every nodeinfers transmission times
as well as the data rate to use, based on incoming innovative information and on mes-
sages it receives from its neighbors. This scheme has been proven to perform very close
to a mechanism exploiting partially centralized and optimal transmission schedules.

ANC works as follows. When a transmission opportunity occurs, the node randomly
combines a number of packets in its buffer, so that the resulting packet has a degree that
is as high as possible while being less than or equal toD(r). If this degree can not be
obtained, the algorithm combines all packets in the buffer,obtaining a degree strictly
lower thanD(r). It is easy to determine the degree of a packet from the numberof
non-zero entries in the corresponding coding vector. At thefirst transmission, the buffer
is empty and the node generates and transmits a packet containing only the node’s
own information. Upon receiving a new packet, a node first checks whether this packet
increases the rank of the decoding matrix (which is formed bythe packets in the node’s
buffer). If this is the case, this packet is stored in the firstempty position of the buffer.
Otherwise, the packet is discarded as it is useless for data recovery purposes. In the
decoding process, early decoding of some information packets may occur before all
packets have been recovered, thereby increasingr, the number of packets recovered by a
given node so far. This often happens in practice due to the manner in which information
propagates and isgradually coded over more and more other information (i.e., there

1 The name degreedistribution is used to recall the stochastic nature of the encoding process
by whichD(r) packets are randomly and uniformly picked among those in thenode’s buffer.
There is, however, an abuse of notation here. In fact, differently from [6] the number of packets
to encodeD(r) is deterministic once we knowr.
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Fig. 1. Average number of packets recovered per node vs. number of packets received for a net-
work of sizeN = 100, static (left) and moderate mobility (right) scenario.

is a codeword degree distribution inherently given by the information dissemination
process).

The use of a topology-dependent degree distribution is the main difference between
the present algorithm and previous schemes. This modification has a significant impact
and the improvements in terms of dissemination time and total number of decoded pack-
ets sent are substantial, as can be seen from the experimentslater on. In the next section
we discuss the properties that a good degree distribution should have as a function of
the network dynamics.

4.2 Discussion on Degree Distributions

We use the network coding scheme presented in the previous section for our analysis
of the degree distribution’s impact on the performance of the dissemination algorithms.
For the analysis, we first consider a static grid topology (referred to as STATIC in the
experimental results of Section 5). Subsequently, we studythe effects of node mobility
in a moderate random mobility scenario and a so calledrandom encountermobility
scenario (RE in Section 5). In the former, nodes move according to a random way point
mobility model with speeds uniformly distributed in the interval [2, 4] m/s, whereas in
the latter they move in a completely uncorrelated fashion such that the neighbors of a
given node at any time instant are independent of the neighbors of the same node at
any other instant. This latter case corresponds to the scenario analytically investigated
in [5]. It is somewhat unrealistic in practice, except for extremely sparse and highly
mobile networks with very sporadic data exchange.

We start our investigation with the static network case. We considerN = 100
nodes in a grid, where every node has exactly8 neighbors. For the degree distribution
we keep the encoding degreeD(r) at a fixed value, independent ofr, during the entire
dissemination process. Hence, we run simulations by varying the encoding degree from
1 to N in steps of one unit.2 The simulation results for this case are shown in Fig. 1, on
the left side, where we only plot results for a few selected degrees for the sake of clarity.

2 A customized C++ simulator was written to this end.
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distributions in the three mobility scenarios:
D(r) vs recovered packets,r.

In particular, this figure shows the average number of packets recovered per node,r, as
a function of the number of packets received. This plot, as well as the plots that remain
to discuss in this section, were obtained through a large number of simulations, so as
to get sufficiently tight confidence intervals (within±3% of the plotted values). These
intervals, for the sake of readability, are not shown insidethe figures. Fig. 1 clearly
emphasizes that the actual degree in use does matter. Very large degrees (e.g.,N = 100)
tend to have good performance, in that they allow full recovery very early on. However,
they typically present a step behavior, i.e., very little can be decoded up to a certain
point, and then the recovery rate suddenly jumps to100%. By contrast, smaller degrees
give a smoother recovery curve. Due to the static nature of the network and the fixed
node density, there is little difference for very high degrees (around 50 and above).
The early recovery of useful information through a lower degree coding is preferable in
some cases. In particular, in case of a network failure or partition before full recovery,
nodes with such heavily coded information cannot make any use of what they retrieved
so far.

In the right side plot of Fig. 1, we show similar results for the moderate mobility
scenario (again with an average node density of 8 neighbors per node). From the figures
we can see that mobility helps to disseminate information more quickly, in the same
way as a higher degree distribution does. For example, the curve for degree 6 in the
static scenario coincides with the curve for degree 4 in the mobile one. In particular,
the performance of low coding degrees is improved through mobility. Finally, in Fig. 2
we report the same results for the random encounter case. Here, the trend is even more
pronounced, and very low degrees of 1, 2, and 3 perform extremely well, compared to
their performance in the static case.

In all of these graphs, the curves intersect at specific points. Using these crossing
points it is therefore possible to define an “optimal” degreedistribution by moving along
the x-axis of each graph and selecting the curve (i.e., the degree) which maximizes the



number of packets recovered,r. Such a distribution is plotted in Fig. 3 for all of the
three scenarios considered here.

Note that the “optimal” distributions we obtain in this way only approximate the
true optimal curves. Our distributions were obtained offline through the analysis of the
simulation results we obtained for fixed degrees and, in turn, we neglected the dynamics
involved in varying the codeword degree during the dissemination process. Neverthe-
less, we observe that the distribution for the random encounter scenario very closely
matches the true optimal distribution in this case, see [5, 7]. This provides evidence
about the validity of our approach. An exact analysis for thestatic and moderate mo-
bility cases is still missing in the literature and is one of the objectives of our future
research.

Notably, these optimal distributions increaseD(r) slowly for small r. However,
their degreeD(r) increases sharply asr approachesN . This makes sense as when the
number of recovered packets becomes sufficiently large, it is convenient to code over
packets with large degree (largeD(r)) in order to maximize the probability that the few
missing packets are included with high probability in the new encoded packets. More-
over, in the random encounter case, this sudden increase of the encoding degreeD(r)
occurs for higher values ofr. This is mainly due to the fact that mobility contributes
to the redistribution of data in the network. Such a redistribution is however absent in
the static case and should be compensated for by the dissemination protocol through
a more aggressive encoding (i.e., a largerD(r)). Moreover, we verified that the seem-
ingly small difference, for small values ofr, between the distributions in the static and
in the moderate mobility scenarios is however very important in terms of performance.
For the moderate mobility case which, in terms of mobility, lies between the static and
the random encounter scenario, we observe a further interesting fact. In particular, its
distribution is very close to that of the random encounter case up to a certain value of
r (r ≈ 70 in Fig. 3), while it approaches the optimum distribution of the static case for
largerr. The mobility in this scenario provides a sufficient mixing of the information
in the initial delivery phase, whereas this is insufficient to ensure a prompt complete
recovery when there is only a small number of packets left to recover.

Finally, given the importance of picking the right distribution as a function of the
type of mobility, we may think of a distributed algorithm to monitor the dynamics in
the set of neighbors in order to select, and possibly change,the degree distribution in
use. This scheme is also part of our future research.

5 Experimental Results

In this section we discuss and present our experimental results on real sensor nodes.
Our tests are run on MICAz XBow motes with a CC2420 radio chip (working at2.4
GHz) [17] and an MPR2400CA processor based on the Atmel ATmega128L. The trans-
mission range of these sensor nodes for indoor transmissionis about25 meters. As we
obtained our experimental results in a laboratory or36 square meters, we had to scale
down the transmission power so as to get a proper multi-hop environment. Because of
the limited number of sensors available, TOSSIM simulations were run to analyze our
protocol in networks with a larger number of nodes, e.g.,N = 100 (see below for a



short description of the TOSSIM simulator). Hence, we measure the average number of
recovered information packets as a function of the number ofpackets received per node
for grid (with four neighbors per node), line and random topologies. For each scenario
we obtain the performance of our algorithm, ANC. For comparison, we also plot results
for the scheme proposed in [5], referred to here asgrowth codes based dissemination
GCand the pure network coding based scheme in [15], referred tohere asnetwork cod-
ing. ANC is then evaluated considering the optimal distributions discussed above for
the random encounter (ANC-RE) and the static scenario (ANC-STATIC). Note again
that network codingencodes data through the linear combination of all packets (of a
given generation) in the node’s buffer.Growth codes based disseminationuses the RE
distribution, i.e., the optimal distribution in the randomencounter scenario. However,
in this scheme only one packet, which must contain the node’sown information packet,
can be used to increase the encoding degree at any given time (if allowed by the RE
distribution). Hence, even though the distribution in use is the same as in ANC-RE, the
time instants in which the encoding degree is increased differ. Hence, the distribution
for Growth Codes almost always returns lower degree packetsthan what the optimal
encoding policy would do, even for the random encounter scenario. This, as we show
shortly, leads to substantial differences in terms of performance. These schemes, as well
as the different distributions we consider for ANC, are selected to isolate the impact of
the adopted degree distribution and of the coding strategy in use, respectively.

In our experiments, interference due to the channel access mechanism, temporal and
spatial modifications of the transmitting/receiving radiorange, energy consumption due
to transmissions and memory usage are all accounted for. Also, for each setting of the
involved parameters we repeated a number of experiments so as to get sufficiently tight
confidence intervals about our performance measures. In particular, the confidence in-
tervals for the subsequent plots are all within±10% of the values we show in the graphs.
Once again, these intervals are not shown in the graphs for improved readability. In this
section, we show results for the case where each sensor generates a single information
packet. Hence, we focus on the network-wide dissemination of a single generation of
data. Algorithms for more complex scenarios, where nodes generate multiple informa-
tion packets, are given later in Section 6, where we discuss schemes forgeneration and
buffer management.

Before proceeding with the description of the obtained results, we give a short intro-
duction to the TOSSIM TinyOS simulator, which we used to validate our experimental
findings and to obtain results for large networks. TOSSIM is the simulator that is dis-
tributed with TinyOS. It is used to run TinyOS software thereby emulating the behavior
of actual sensor nodes, their timers, the wireless channel,etc. It can be used to test the
code to be eventually run on actual sensors, as well as to simulate the behavior of a given
protocol in large networks. Packets are transmitted according to a standard CSMA chan-
nel access scheme, channel errors can be emulated through any (user defined) channel
model and the correctness of received packets is assessed through a CRC check. Errors
on acknowledgments, missed start symbols, noise, etc., arealso accounted for [18].
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Fig. 4. Average number of packets recovered,r, for 9 sensor nodes placed on line (left) and grid
topologies (right). Results are obtained for GC [5],network coding[15] and the proposed ANC
encoding schemes.

5.1 Small Scale Experiments

In this section we consider a small network of9 sensor nodes, showing results for
grid, line and random topologies. The transmission power isset to the same value for all
sensor nodes. In the experiments each node broadcasts either uncoded or coded packets
to its neighbors, where coding is executed by means of one of the above algorithms.
To access the channel, we use a standard CSMA scheme. At the end of each exper-
iment, all sensors communicate the collected statistics transmitting atrace file to the
sink node. Trace files contain information about received/transmitted packets as well as
their degrees.
9 sensor nodes, line and grid topologies: Positioning the nodes so as to exactly ob-
tain line or grid topologies is difficult in practice, due to the dynamics of the wireless
channel. MICAz motes are in fact quite sensitive to antenna positioning and interfer-
ence. Transmitting and receiving radio ranges change significantly in space and time,
see [19]. Given these facts, the actual connectivity graph we get in our experiments
does not perfectly match the corresponding graph we would obtain in a simulation with
a deterministic channel model. To smooth out part of these variations, we average the
results over a sufficient number of experiments.

In Fig. 4 we show the results for line (left plot) and grid (right plot) topologies. For
the grid case we considered four neighbors per node. Notably, GC gives unsatisfactory
performance in both cases. In particular, the fact that the degree can only be increased
adding the node’s own information packet to the received packets is insufficient for a
proper mixing of the information in static networks. This problem was not observed
in [5] as in this paper the authors only focused on extremely dynamic topologies, where
the growth codes encoding strategy performs well.Network codingperforms well and
very close to ANC-STATIC. For this reason, only one curve is plotted for both mecha-
nisms. ANC-RE does not perform equally well due to the conservative degree distribu-
tion, but it clearly outperforms Growth Codes with the same distribution. Performance
in the simulations is slightly higher than in real networks for all algorithms, due to the
“more well-behaved” channel mode, but overall TOSSIM simulation data points are
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simulations withN = 100 nodes on a grid.

reasonably close to the outcomes of our experiments (as seenin the left plot of Fig. 4).
A similar agreement between TOSSIM and experiments was found for the results in
Fig. 4, plot on the right (and thus they were omitted for the sake of readability). When
comparing the two curves, one can see that the less connectedthe topology is, the more
important the high node degree becomes (as done by pure network coding [15]). In the
line scenario, pure network coding outperforms all other algorithms. The increase in the
number of neighbors in the grid topology helps information dissemination and allows
ANC to perform as well as network coding. Growth Codes have worse performance
here.
9 sensor nodes, static random topology: Next, we present our experimental results
for a simple random topology. This topology is somewhere in between the grid and
and the line network and is set up so as to obtain a connected graph. The results for
this scenario are given in Fig. 5. A comparison with TOSSIM isnot shown due to
the difficulties in reproducing the exact random scenario inthe simulator. Once again,
ANC (ANC-STATIC) performs very close tonetwork coding. We can also observe the
gap between ANC-STATIC and ANC-RE: the performance of the latter suffers as its
degree distribution is not optimal in a static scenario. Finally, GC still gives the worst
performance among the considered schemes.

At this point, one might observe that there is little reason for using ANC, as standard
network coding(i.e., encoding over all available packets) performs very well. However,
note that this comes from the fact that nodes gradually accumulate information, and
even with full network coding will send out lower degree packets in the beginning, due
to the unavailability of further information. This is not the case for larger networks, as
we show below.

5.2 Large Scale Experiments

In this section we show results for a network withN = 100 nodes. Simulation
points are obtained with TOSSIM, the TinyOS simulator. In this simulator, the training



sequence (start symbols) of every packet is transmitted at10 Kbps, whereas the payload
is transmitted at the higher rate of40 Kbps. Hence, sending a packet of, say,128 bytes
will take about25.6 ms. Assuming that nodes take turns to transmit, an ideal TDMA
would require2.56 s to schedule the transmission of all nodes. Since we use a ran-
dom access protocol, we let nodes pick a random transmissiontime within an interval
of [0, 10] s for each transmission slot. In detail, when a node receivesan information
packet, it stores such packet in its buffer. Hence, before sending a new packet, it waits
for the next transmission slot. Transmissions are finally triggered by picking a random
transmission time within each time slot. This results in a reasonably low collision rate.
We used these settings in all our TOSSIM simulations. The results for 100 nodes are
shown in Fig. 6 where we report the performance of ANC,network codingand GC. It
shall be observed that in this casenetwork codingpresents the same step-like behavior
we discussed previously. This is however detrimental to theperformance in terms of
data persistenceas discussed in [5]. In fact, assume that some nodes (or even the whole
network) stop working after the dissemination of, e.g.,80 packets so that the network
becomes fragmented. In this case,network codingwould give a recovery rate close to
zero. ANC-STATIC, instead, would provide a delivery rate ofabout33% (i.e., one third
of the packets to be delivered). The same applies if the network generates data faster
than it can be transported to the sink nodes. In this case, coding over all packets will
prevent the sink node from decoding since it cannot gather enough data for each gener-
ation. Also in settings where requests for aggregate information occur at random times
and at random nodes in the sensor network, always being able to decode most of the
received data is beneficial. Otherwise, the request could only be served after all data has
been decoded. Thus, in practical settings a smooth recoveryis advisable. Moreover, en-
coding oversomepackets, as we do in ANC, leads to sparse decoding matrices. These
can be inverted with a lower complexity through, e.g., heuristic algorithms, thus leading
to lower energy consumption. In addition, with sparse matrices early decoding occurs
with higher probability (which is the actual reason for the smooth recovery of ANC).

As a further remark, we note that there is a substantial difference between ANC-
STATIC and ANC-RE for a static network withN = 100 nodes. This is a further
indication of the importance of the selected degree distribution, especially for large net-
works. Finally, we observe that GC still gives unacceptableperformance. Once again,
the selected encoding strategy matters and its importance becomes apparent with in-
creasing network size.

6 Handling multiple generations via buffer management

In this section we consider a more general scenario, where nodes generate a large
number of observations, at different time instants. We use the concept ofgenerationsas
introduced in Section 3. How packets are subdivided into generations can be decided for
example based on spatial or temporal criteria. With the termspatial generationwe refer
to the data generated within the same cluster of nodes, i.e.,within a well characterized
geographical region (over a certain period of time). Withtemporal generationwe refer
to the data generated within the same time interval by all thenodes in the network: for
the sake of simplicity we consider that the first readings of all sensor nodes belong to



the first generation, the second readings to the second generation and so on. Here, we
present a simple buffer management scheme based on temporalgenerations. This buffer
management scheme is included in the real-world implementation used in the previous
section.

MICAz nodes have very limited RAM capabilities. Sensor nodes may only be able
to hold a single generation in their memory at a time. This is especially true when
the number of nodes in the network,N , is large. Moreover, energy consumption is an
important consideration in wireless sensor networks and wethus need to devise energy
efficient solutions to handle multiple generations with thegiven memory constraints. In
case multiple generations can be stored in the RAM, the following discussion still holds
with minimal modifications.

Let N be the number of nodes in the network, which we consider to be connected.
Our ANC protocol is used to select the degree distribution for encoding. Moreover,
assume that our nodes are processing the first generation of data. As per our ANC algo-
rithm, as nodes receive new codewords (i.e., new packets), these are stored in the main
buffer in RAM (one codeword, one row in the buffer). When a transmission opportu-
nity occurs, the rows in the buffer are randomly combined as dictated by the degree
distribution in use, following the procedure we described in the previous sections.

For the sake of explanation, consider now the instant in which a given node re-
covers the first generation. Note that any further packet this node may receive for this
generation will be discarded since the packet can not be innovative. Also, the packets
currently stored in the buffer (i.e., the recovered generation) can be safely copied to
the flash memory as the decoding process is complete for this generation at this spe-
cific node. However, these packets are not deleted right awayfrom the buffer, but are
rather kept there to further assist the node’s neighbors that have not yet recovered the
generation.

Upon the complete decoding of the old data, the node can startprocessing a new
generation (i.e., encoding new readings) but the neighborsof this node that are still
using the old generation might need additional packets to beable to decode. In order
to help these nodes, we propose a novel algorithm referred tohere ascooperative dis-
tribution management. According to this scheme, the node successively overwrites the
old data in the RAM, with data from the new generation, from the top row of the buffer
to the bottom one. When information belonging to the new generation is received, the
node in question stores it in the first row of its buffer. The old packet that previously
occupied this position in the buffer is not deleted, but it israther combined with the
packet in the last position of the buffer, as shown in Fig. 7, figure on the left. Upon the
reception of subsequent packets belonging to the new generation, the node sequentially
stores them in the second, third, etc. position of the buffer, by combining the old packets
in these positions with the old packets that are still in the buffer. This combination is
done in such a way that the degrees of the old packets that are retained in the buffer
resemble, as close as possible, the power of two sequence1, 2, 4, 8, . . . , see Fig. 7, fig-
ure in the middle. This specific sequence allows a sufficient variety of degrees among
the retained old packets to be able to send out packets of different degrees if necessary.
As long as neighbors require packets from the old generation, the node may alternately
send out packets from the new and the old generation.



We now consider the nodes which may receive packets belonging to the new gen-
eration without, however, having switched to it yet. These nodes may just store these
packets in an extra buffer of small size for later use (in casesuch additional storage
space is available). This allows a prompt switch to the new generation, as soon as the
recovery of the old generation is complete.

We observe that the above mechanism extensively uses the RAMmemory, whereas
the flash memory is written only upon the complete recovery ofa given generation of
data. Limiting the access to the flash is an important consideration as it is characterized
by rather long writing times as well as substantial energy consumption (compared to
writing to the RAM).
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Fig. 7. Example of buffer management. Generationi is fully recovered, the new generationi + 1
is being processed. Packets belonging to generationi are still retained, through their linear com-
bination, upon the reception of packets pertaining to the new generation.

We intend to investigate further buffer management schemesin future work. In par-
ticular, we believe that a more flexible scheme that is able tohandle multiple generations
simultaneously, while adhering to the same memory constraints, may improve the per-
formance. Writing coded data to the flash is undesirable since it needs to be rewritten
once it has be decoded. However, it is not necessary to only write full generations to the
flash in a single pass. As partial data is recovered, it can be written to the flash in case
it is not needed very often for the decoding of further packets for a given generation.
Note that reading from the flash is substantially less expensive than writing to it. We
also intend to explore spatial generations, coded over the packets of a specific region.

7 Conclusions

In this paper we proposed a novel network coding-based algorithm with adaptive
degree distribution, with the aim of achieving a high degreeof data persistence in
static and mobile networks. We believe this is an important first step towards a prac-
tical self-adaptive coding algorithm for sensor networks.We provide insights into the
relationship between degree distributions and network mobility. We also characterized
the performance of different encoding schemes and related degree distributions through
simulations and experiments on real nodes.

A more thorough analysis on how to adapt the degree distribution to the specific
dynamics of the network (and how to “measure” these dynamics) is still necessary and



kept under study. Moreover, buffer management is another important avenue for future
research, which we briefly introduced here and which needs tobe addressed further to
successfully distribute multiple snapshots of data in large networks.
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