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Abstract. Storing and disseminating coded information instead ofattiginal
data can bring significant performance improvements tocsemstwork proto-
cols. Such methods reduce the risk of having some data a¢gti@t many nodes,
whereas other data is very scarce. This is of particular itapoe for data per-
sistence in sensor networks. While coding is generally fi@ak coding over
all available packets can be detrimental to performanoeesioded information
might not be decodable after a network failure. In this paperinvestigate the
suitability of different codeword degree distributionghviespect to the dynamics
of the underlying wireless network and design a correspwndata management
algorithm. We further propose a simple buffer managememrse for continu-
ous data gathering. The performance of the protocols is dstraded by means
of simulation, as well as experiments with an implementatin MICAz motes.

1 Introduction

Data collection is the primary task of a wireless sensor agkwrTo this end, the
sensed data has to be transported to the sink node(s) ordsheidtored within the
network in case no sink node is currently available. Due ® ghwer and memory
constraints of the sensor nodes, this has to be done as rtfjcées possible. Network
coding [1] was shown to provide significant benefits in suctwoeks. Several papers
have analyzed the benefits of random network coding [2] flmrmation dissemination
and data persistence [3] (the amount of information thatleaecoded at any give
time). These methods reduce the risk of having some dataggd at many nodes,
whereas other data is very scarce (in analogy to the coupectm’s problem [4]).
The robustness that can be achieved through the diversayaifable information by
coding at intermediate nodes can be crucial in sensor nksyarhere node failures
may be common.

While coding is generally beneficial, coding over all aviaidgpackets might leave
coded information undecodable after a network failures teducing data persistence.
Algorithms such as Growth Codes (GC) [5], a variant of LT coffi, address this is-
sue by using low complexity coding algorithms together wittode degree distribution
that maximizes data persistence. These concepts are izeeia[7], considering cod-
ing over multiple snapshots of data and more general randomedhtoding schemes.
Growth Codes are designed for networks where the informadiailable at neigh-
boring nodes is uncorrelated, i.e., very sparse networks aviopology that changes
significantly from one transmission to the next.



In this paper we investigate the suitability of differentieword degree distributions
with respect to the dynamics of the underlying wireless oetwin particular, we also
investigate more static settings than those analyzed wique research and discuss
their implications on the optimum degree distribution. \Wert design a corresponding
data dissemination algorithm that works well over a widegeanf different network
scenarios. To allow autonomous operation over an extenelgddoof time in the face
of a small amount of available RAM, nodes usually use theiboard flash memory.
Since writing to (and to a lesser degree also reading from)fldsh is very energy
consuming, the coding algorithm has to make sure that treerédguired for encoding
and decoding is available in RAM, and only data that is ujite be used again in the
near future is written to the flash. We propose a simple buffenagement scheme that
allows for continuous data gathering, without using an sgis® amount of writes to
the flash memory.

The protocol is implemented on the MICAz mote platform. Wefpen a range of
experiments to demonstrate its performance and compargietiously proposed so-
lutions. We further use simulation to investigate the duitits of the proposed approach
in larger networks.

The paper is structured as follows. In Section 2 we revieateel work. Section 3
gives a brief overview of network coding. In Section 4 we preur novel algorithm
based on network coding, analyzing suitable degree disiibs for coding. Section 5
provides detailed simulation and experimental resultseah sensor nodes for the dif-
ferent coding algorithms and degree distributions. In i8acé we present a buffer
management scheme to handle multiple temporal generatiodata and Section 7
concludes the paper.

2 Redated Work

The usefulness of network coding for data storage was iigagsd in [3], where the
authors showed that a simple distribution scheme usingarkteoding and only based
on local information can perform almost as well as the caseralhere is complete
coordination among nodes. Similar considerations alstyapsensor networks.

Growth Codes [5] were specifically designed to enhance datsigtence, i.e., to
maximize the amount of information that can be decoded attiamy instant. Sensor
nodes send out codewords that can be coded over multiplmalrigformation units.
Nodes exchange codewords with their neighbors and combéasived codewords with
the existing local information, such that the stored infation is coded over more and
more information units over time.

The number of original information units a stored codewsrctided over is referred
to as codeword degree. The authors in [5] propose to gradinaiiease the codeword
degree with the amount of received information, hence tineeri@rowth Codes”. This
codeword degree distribution optimizes sensor network patsistence in the presence
of node failures, as it allows to decode the joint informaitid any subset of nodes with
high probability. Intuitively, a high degree increases ginebability that transmissions
are innovative in that they bring new information to neigishavhile a low degree in-
creases the probability that the information can be decodetdiately upon reception,



thus decreasing the likelihood that nodes will be left wittdaecodable information in
case parts of the sensor network fail. As mentioned in thrediiction, Growth Codes
work well in case the information available at neighboriragles is uncorrelated. As
shown in [8], performance degrades in less dynamic sitogtizhich are more likely
to be found in sensor networks scenarios.

An extension of the Growth Codes work is described in [7], kehiae problem
of collecting multi-snapshots spatial data in a resouraestrained sensor network is
addressed. Starting from [5], which provides an exampléngfle snapshot data collec-
tion, the authors of [7] combine coding and scheduling toimé&ze the system'’s utility.
They implement two algorithms, with and without mixing thrapshots, where only in
the latter case a schedule is needed to improve the totay @#din. The scheduling
problem is modeled through the Multi-Armed Bandit theorg aolved optimally us-
ing Gittins Indices. They also demonstrate that there gxstoptimal degree for the
snapshots-mixed coding, which achieves maximum utiliip gad data persistence.

We observe that without coding, data collection becomeivabpnt to a coupon col-
lector problem [9] which take® (N log N') coupons (symbols) for recovering thé
original symbols. Existing coding techniques help avaidime related heavy tail collec-
tor effect. However, channel codes such as LT Codes [6] ardfS®lomon Codes [10]
start decoding only after accumulating a large number aived packets, which is not
suitable for resource constrained sensor nodes (due toJimged memory) and for
data persistence. Persistence and reliability of cach&d @ be improved through
Fountain Codes, as shown in [11]. The authors use Beliefagyaton (BP) for a low
decoding complexity. Random walks are used to dissemirmatedtdata in a scalable
way. The paper is related to our work, addressing the probfesata persistence when
sinks are not available, but it uses the Robust Soliton dedjistribution, which limits
the range of applicable scenarios. Close to this work, [1@ppses a decentralized im-
plementation of fountain codes. Erasure codes lead to egdtmmmunication, storage
and computational cost over random linear coding. One m@wlthck is to consider
only one data packet stored in each node, and then multipliedo with incoming new
symbols, which wastes the capability of the sensor nodesrameases rapidly code-
word degrees without taking into account the network togpl@nother drawback is
the data dissemination process via pre-routing, in pdai@eographic routing, which
requires each node to know its own location. Pre-routingésprocess by which each
node, before the data collection can take place, routesitsghcket tal randomly se-
lected nodes, which will be XORing what they receive. In [18 authors extend this
approach by showing that if these conditions are slightlxed, a constant pre-routing
degree suffices.

The main difference of our work with respect to previous aesk is that we specif-
ically analyze codeword degree distributions providingghtdegree of resilience to
node/network failures for a much wider range of scenariban(t e.g., in [5]). In ad-
dition, we present a thorough discussion on the degredhititns that work well,
designing a full data dissemination algorithm, which we ptete with a buffer man-
agement scheme. Finally, we provide a performance analysisgh experiments with
a real-world implementation of the algorithm on sensor mote



3 Network Coding

With network coding, nodes transmit packets coded overipieloriginal packets,
instead of uncoded data. Coded packets can contain infamfabm many different
data sources. For coding, setssofonsecutive bits of a packet are treated as a sym-
bol over the Galois field7F(q), with ¢ = 2%, and anL bits long packet consists of
L/s symbols. Note that coded packets have the same length adeddata packets.
Due to its simplicity, usuallyinear network coding is used, where packets are linear
combinations of the original packets.

For random linear network coding, a packétcoded over the original packets
X1t ..., X™is generated by multiplying each with a random coding caiefficg; to
obtainy = "7 | ¢;X". Thisis done individually for each symbol in the data packet
is not necessary to first decode received data in order téecnesv coded packets, but
the same operations can be applied recursively to alreatydcdata.

Decoding requires knowledge of the coding coefficients shoplicity, assume that
a packet contains both the coefficiepts= (g1, ..., g.) and the encoded data [14]. As-
sume a node has receiveg, Y'!), ..., (¢", Y™). Decoding requires solving the system
of equations{Y? = " | ¢/ X"} to retrieve the originaK“. In casem > n andn of
the equations are linearly independent, all data can beeeed.

The special casé&/F(2) with a field size of2 is very appealing for sensor net-
works since it only requires addition over a finite field (wWhimorresponds to a simple
xor ) and no multiplication. Also the coding coefficients areyoalsingle bit which
reduces overhead and decoding complexity. Different &lyos are suitable for de-
coding. Network coding schemes often use Gaussian elimimét invert the matrix
of coding coefficients, but also methods with lower compatet! complexity (e.g.,
message passing [6]) can be effectively used in some cases.

To cope with the limited node memory, it is necessary to limithe number of
packets that can be coded over at the same time. Packetsaangedrinto genera-
tions [14], and only packets from the same generation caombdimed in the encoding
process.

4 Coding Degree Distributions for Static and Mobile Networks

4.1 Description of the Algorithm

In this section we present a novel network coding (NC) atbari calledadaptive
network codindANC). In contrast to previous schemes ANC uses specificededis-
tributions (specified in detail later) in order to adapt iehhvior to the type of mobility
in the network. Each node has a buffer of limited and knowe,sizhich should be how-
ever larger than the size of the current generation (i.eth@humber of packets that
are to be processed together and eventually distributetl tm@es). This buffer may
contain encoded as well as original information packetdcivimay be combined to
produce additional encoded packets through random lire@ing. Whenever a trans-
mission opportunity occurs, NC schemes usually (see,[@%j]), code over all packets
in the buffer. We however advocate that coding cadbavailable linearly independent



packets (maximum degree encoding) at all times is not alwatisnal in terms of per-
formance. This was observed in [5], where the authors shahstddepending on the
number of decoded aecoveredpacketsr at a specific node there exists an optimal
number of packets to combine to get close to optimal perfagaan terms of number
of decodable packets at each instant in time. The optimumededjstribution however
depends on the dynamics of the underlying network and inH8]authors show the
deficiencies of Growth Codes in scenarios other than the sgpegific one they were
designed for.

In this section, we design suitable network coding alganighbased on our findings
on the impact of network dynamics such as node mobility arzchobl conditions. We
use the following definitions. Theacket degreés the number of original information
packets which are combined together to form a packet. Theedatjstribution gives
the degree that a packet to be sent should have to give maxjmudiormance under
certain network conditions: if is the number of packets recovered at a given node, the
degree distribution returr(r), i.e., the degree of the next output packet.

We further say that a transmission opportunity for a nodeicarhen this node is
selected for transmitting a new encoded packet. The acaradmission schedule is not
specified in detail here and could be, e.qg., either TDMA basedent based. In the for-
mer case, a distributed or centralized TDMA schedule israsslywhereas in the latter
a new encoded packet is usually sent as the node receivesiiveinformation from
its neighbors (see [15]). An example of a fully distributggbeoach for the selection of
transmission schedules can be found in [16], where the esifitopose Proactive Net-
work Coding (ProNC). According to this strategy, every noders transmission times
as well as the data rate to use, based on incoming innovatiwenation and on mes-
sages it receives from its neighbors. This scheme has beearpto perform very close
to a mechanism exploiting partially centralized and optirensmission schedules.

ANC works as follows. When a transmission opportunity osctive node randomly
combines a number of packets in its buffer, so that the iegyttacket has a degree that
is as high as possible while being less than or equ@(to. If this degree can not be
obtained, the algorithm combines all packets in the buffbtaining a degree strictly
lower thanD(r). It is easy to determine the degree of a packet from the number
non-zero entries in the corresponding coding vector. Afiteetransmission, the buffer
is empty and the node generates and transmits a packetogtainly the node’s
own information. Upon receiving a new packet, a node firstkhevhether this packet
increases the rank of the decoding matrix (which is formethkypackets in the node’s
buffer). If this is the case, this packet is stored in the sty position of the buffer.
Otherwise, the packet is discarded as it is useless for éatavery purposes. In the
decoding process, early decoding of some information pgaakeay occur before all
packets have been recovered, thereby increasitg number of packets recovered by a
given node so far. This often happens in practice due to theran which information
propagates and igradually coded over more and more other information (i.e., there

! The name degredistribution is used to recall the stochastic nature of the encoding psoce
by whichD(r) packets are randomly and uniformly picked among those imtiuie’s buffer.
There is, however, an abuse of notation here. In fact, @iffiy from [6] the number of packets
to encodeD(r) is deterministic once we know.
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Fig. 1. Average number of packets recovered per node vs. numberckéfsareceived for a net-
work of size N = 100, static (left) and moderate mobility (right) scenario.

is a codeword degree distribution inherently given by therimation dissemination
process).

The use of a topology-dependent degree distribution is the difference between
the present algorithm and previous schemes. This modditats a significant impact
and the improvements in terms of dissemination time andinotaber of decoded pack-
ets sent are substantial, as can be seen from the experilaentsn. In the next section
we discuss the properties that a good degree distributionldihave as a function of
the network dynamics.

4.2 Discussion on DegreeDistributions

We use the network coding scheme presented in the previotierséor our analysis
of the degree distribution’s impact on the performance efdissemination algorithms.
For the analysis, we first consider a static grid topologfefred to as STATIC in the
experimental results of Section 5). Subsequently, we duelgffects of node mobility
in a moderate random mobility scenario and a so caiteiom encountemobility
scenario (RE in Section 5). In the former, nodes move acogrigdi a random way point
mobility model with speeds uniformly distributed in theental [2, 4] m/s, whereas in
the latter they move in a completely uncorrelated fashiarh ghat the neighbors of a
given node at any time instant are independent of the nerghtifathe same node at
any other instant. This latter case corresponds to the soemaalytically investigated
in [5]. It is somewhat unrealistic in practice, except fotrermely sparse and highly
mobile networks with very sporadic data exchange.

We start our investigation with the static network case. \WasaerN = 100
nodes in a grid, where every node has exagtheighbors. For the degree distribution
we keep the encoding degré¥r) at a fixed value, independentafduring the entire
dissemination process. Hence, we run simulations by vaiyie encoding degree from
1to NV in steps of one unft.The simulation results for this case are shown in Fig. 1, on
the left side, where we only plot results for a few selectegtées for the sake of clarity.

2 A customized C++ simulator was written to this end.
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network of sizeN = 100, random encounter D(r) vs recovered packets,

mobility scenario.

In particular, this figure shows the average number of padleztovered per node, as

a function of the number of packets received. This plot, dtagghe plots that remain
to discuss in this section, were obtained through a largebeurof simulations, so as
to get sufficiently tight confidence intervals (withif3% of the plotted values). These
intervals, for the sake of readability, are not shown ingh figures. Fig. 1 clearly
emphasizes that the actual degree in use does matter. Yigeydegrees (e.gN = 100)
tend to have good performance, in that they allow full recpvery early on. However,
they typically present a step behavior, i.e., very little @ decoded up to a certain
point, and then the recovery rate suddenly jumpKt@e. By contrast, smaller degrees
give a smoother recovery curve. Due to the static natureeohtitwork and the fixed
node density, there is little difference for very high degrdaround 50 and above).
The early recovery of useful information through a lowermegcoding is preferable in
some cases. In particular, in case of a network failure ditjpar before full recovery,
nodes with such heavily coded information cannot make aayéis/hat they retrieved
so far.

In the right side plot of Fig. 1, we show similar results foe thoderate mobility
scenario (again with an average node density of 8 neighleonsqule). From the figures
we can see that mobility helps to disseminate informatiomenzickly, in the same
way as a higher degree distribution does. For example, thedor degree 6 in the
static scenario coincides with the curve for degree 4 in tbila one. In particular,
the performance of low coding degrees is improved throughilityp Finally, in Fig. 2
we report the same results for the random encounter case, tHertrend is even more
pronounced, and very low degrees of 1, 2, and 3 perform exisewell, compared to
their performance in the static case.

In all of these graphs, the curves intersect at specific poising these crossing

points it is therefore possible to define an “optimal” degfistribution by moving along
the x-axis of each graph and selecting the curve (i.e., tgeed¢ which maximizes the



number of packets recovered, Such a distribution is plotted in Fig. 3 for all of the
three scenarios considered here.

Note that the “optimal” distributions we obtain in this waplp approximate the
true optimal curves. Our distributions were obtained ddfinrough the analysis of the
simulation results we obtained for fixed degrees and, in tuemeglected the dynamics
involved in varying the codeword degree during the dissetiom process. Neverthe-
less, we observe that the distribution for the random entewistenario very closely
matches the true optimal distribution in this case, see][5Tfiis provides evidence
about the validity of our approach. An exact analysis fordtegic and moderate mo-
bility cases is still missing in the literature and is one loé bbjectives of our future
research.

Notably, these optimal distributions increa®ér) slowly for smallr. However,
their degreeD(r) increases sharply asapproachesV. This makes sense as when the
number of recovered packets becomes sulfficiently large,dbnvenient to code over
packets with large degree (lar@¥r)) in order to maximize the probability that the few
missing packets are included with high probability in thevrencoded packets. More-
over, in the random encounter case, this sudden increabe efcoding degreB(r)
occurs for higher values of. This is mainly due to the fact that mobility contributes
to the redistribution of data in the network. Such a redisiibn is however absent in
the static case and should be compensated for by the dissgonimprotocol through
a more aggressive encoding (i.e., a larfér)). Moreover, we verified that the seem-
ingly small difference, for small values of between the distributions in the static and
in the moderate mobility scenarios is however very impdriaterms of performance.
For the moderate mobility case which, in terms of mobiligysIbetween the static and
the random encounter scenario, we observe a further ititegdfact. In particular, its
distribution is very close to that of the random encountseaap to a certain value of
r (r =~ 70 in Fig. 3), while it approaches the optimum distribution teé tstatic case for
largerr. The mobility in this scenario provides a sufficient mixinigtioe information
in the initial delivery phase, whereas this is insufficiemensure a prompt complete
recovery when there is only a small number of packets lefttover.

Finally, given the importance of picking the right distritmn as a function of the
type of mobility, we may think of a distributed algorithm tcomitor the dynamics in
the set of neighbors in order to select, and possibly chahgejegree distribution in
use. This scheme is also part of our future research.

5 Experimental Results

In this section we discuss and present our experimentdisesureal sensor nodes.
Our tests are run on MICAz XBow motes with a CC2420 radio chiprking at2.4
GHz) [17] and an MPR2400CA processor based on the Atmel ABh28L. The trans-
mission range of these sensor nodes for indoor transmigsaimout25 meters. As we
obtained our experimental results in a laboratorg®square meters, we had to scale
down the transmission power so as to get a proper multi-hepemment. Because of
the limited number of sensors available, TOSSIM simulaiaere run to analyze our
protocol in networks with a larger number of nodes, elj.= 100 (see below for a



short description of the TOSSIM simulator). Hence, we meathe average number of
recovered information packets as a function of the numbpaokets received per node
for grid (with four neighbors per node), line and random fogees. For each scenario
we obtain the performance of our algorithm, ANC. For comgxani we also plot results
for the scheme proposed in [5], referred to herg@svth codes based dissemination
GCand the pure network coding based scheme in [15], referredrmasietwork cod-
ing. ANC is then evaluated considering the optimal distritngialiscussed above for
the random encounter (ANC-RE) and the static scenario (ANBTIC). Note again
that network codingencodes data through the linear combination of all packsta (
given generation) in the node’s buff&@rowth codes based disseminatioses the RE
distribution, i.e., the optimal distribution in the rand@ncounter scenario. However,
in this scheme only one packet, which must contain the naf@’sinformation packet,
can be used to increase the encoding degree at any givenitiaioed by the RE
distribution). Hence, even though the distribution in sthe same as in ANC-RE, the
time instants in which the encoding degree is increasedrdiffence, the distribution
for Growth Codes almost always returns lower degree padkats what the optimal
encoding policy would do, even for the random encounteradenThis, as we show
shortly, leads to substantial differences in terms of pentnce. These schemes, as well
as the different distributions we consider for ANC, are sigld to isolate the impact of
the adopted degree distribution and of the coding strateggé, respectively.

In our experiments, interference due to the channel acceskanism, temporal and
spatial modifications of the transmitting/receiving radiage, energy consumption due
to transmissions and memory usage are all accounted fay, fdseach setting of the
involved parameters we repeated a number of experimentstecget sufficiently tight
confidence intervals about our performance measures. ticylar, the confidence in-
tervals for the subsequent plots are all withih0% of the values we show in the graphs.
Once again, these intervals are not shown in the graphs foowed readability. In this
section, we show results for the case where each sensorgesarsingle information
packet. Hence, we focus on the network-wide disseminati@asingle generation of
data. Algorithms for more complex scenarios, where nodaesiggée multiple informa-
tion packets, are given later in Section 6, where we disattssrses fogeneration and
buffer management

Before proceeding with the description of the obtainedltsswe give a short intro-
duction to the TOSSIM TinyOS simulator, which we used todatée our experimental
findings and to obtain results for large networks. TOSSIM&s simulator that is dis-
tributed with TinyOS. It is used to run TinyOS software tharemulating the behavior
of actual sensor nodes, their timers, the wireless chaatellt can be used to test the
code to be eventually run on actual sensors, as well as tdatiethe behavior of a given
protocol in large networks. Packets are transmitted a@egtd a standard CSMA chan-
nel access scheme, channel errors can be emulated throp@isan defined) channel
model and the correctness of received packets is assessadhia CRC check. Errors
on acknowledgments, missed start symbols, noise, etcaJsoeaccounted for [18].
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topologies (right). Results are obtained for GC [gétwork codind15] and the proposed ANC
encoding schemes.

5.1 Small Scale Experiments

In this section we consider a small network%s$ensor nodes, showing results for
grid, line and random topologies. The transmission powsgti$o the same value for all
sensor nodes. In the experiments each node broadcastagitieeled or coded packets
to its neighbors, where coding is executed by means of onkeoébove algorithms.
To access the channel, we use a standard CSMA scheme. Atdhef @ach exper-
iment, all sensors communicate the collected statistarsstnitting atrace fileto the
sink node. Trace files contain information about receivad&mitted packets as well as
their degrees.

9 sensor nodes, line and grid topologies: Positioning the nodes so as to exactly ob-
tain line or grid topologies is difficult in practice, due teetdynamics of the wireless
channel. MICAz motes are in fact quite sensitive to anterwsitioning and interfer-
ence. Transmitting and receiving radio ranges changefgigntly in space and time,
see [19]. Given these facts, the actual connectivity graphget in our experiments
does not perfectly match the corresponding graph we woutimm a simulation with

a deterministic channel model. To smooth out part of thes@tians, we average the
results over a sufficient number of experiments.

In Fig. 4 we show the results for line (left plot) and grid frtglot) topologies. For
the grid case we considered four neighbors per node. Notakiygives unsatisfactory
performance in both cases. In particular, the fact that #grek can only be increased
adding the node’s own information packet to the receivedketzds insufficient for a
proper mixing of the information in static networks. Thioplem was not observed
in [5] as in this paper the authors only focused on extremghadhic topologies, where
the growth codes encoding strategy performs vidditwork codingperforms well and
very close to ANC-STATIC. For this reason, only one curvel@tpd for both mecha-
nisms. ANC-RE does not perform equally well due to the coregere degree distribu-
tion, but it clearly outperforms Growth Codes with the saristribution. Performance
in the simulations is slightly higher than in real networ&s &ll algorithms, due to the
“more well-behaved” channel mode, but overall TOSSIM satioh data points are
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reasonably close to the outcomes of our experiments (adrsétem left plot of Fig. 4).
A similar agreement between TOSSIM and experiments wasdféonthe results in
Fig. 4, plot on the right (and thus they were omitted for thieesaf readability). When
comparing the two curves, one can see that the less conrthetaapology is, the more
important the high node degree becomes (as done by purenketading [15]). In the
line scenario, pure network coding outperforms all othgodthms. The increase in the
number of neighbors in the grid topology helps informati@gsdmination and allows
ANC to perform as well as network coding. Growth Codes havese@erformance
here.

9 sensor nodes, static random topology: Next, we present our experimental results
for a simple random topology. This topology is somewhereeatween the grid and
and the line network and is set up so as to obtain a connecsgthgThe results for
this scenario are given in Fig. 5. A comparison with TOSSIMé shown due to
the difficulties in reproducing the exact random scenarithésimulator. Once again,
ANC (ANC-STATIC) performs very close tnetwork codingWe can also observe the
gap between ANC-STATIC and ANC-RE: the performance of tlietasuffers as its
degree distribution is not optimal in a static scenarioalfyn GC still gives the worst
performance among the considered schemes.

At this point, one might observe that there is little reasmmusing ANC, as standard
network codindi.e., encoding over all available packets) performs veglt iHowever,
note that this comes from the fact that nodes gradually aatatminformation, and
even with full network coding will send out lower degree petskin the beginning, due
to the unavailability of further information. This is notettase for larger networks, as
we show below.

5.2 Large Scale Experiments

In this section we show results for a network with = 100 nodes. Simulation
points are obtained with TOSSIM, the TinyOS simulator. lis #imulator, the training



sequence (start symbols) of every packet is transmittéd ldbps, whereas the payload
is transmitted at the higher rate 4 Kbps. Hence, sending a packet of, se38 bytes
will take about25.6 ms. Assuming that nodes take turns to transmit, an ideal TDMA
would require2.56 s to schedule the transmission of all nodes. Since we use-a ran
dom access protocol, we let nodes pick a random transmisisienwithin an interval

of [0,10] s for each transmission slot. In detail, when a node receimesformation
packet, it stores such packet in its buffer. Hence, befandisg a new packet, it waits
for the next transmission slot. Transmissions are finai@ygered by picking a random
transmission time within each time slot. This results inasonably low collision rate.
We used these settings in all our TOSSIM simulations. Thelte$for 100 nodes are
shown in Fig. 6 where we report the performance of AN€twork codingand GC. It
shall be observed that in this casetwork codingpresents the same step-like behavior
we discussed previously. This is however detrimental topddormance in terms of
data persistencas discussed in [5]. In fact, assume that some nodes (or kgevhole
network) stop working after the dissemination of, e&§. packets so that the network
becomes fragmented. In this casetwork codingvould give a recovery rate close to
zero. ANC-STATIC, instead, would provide a delivery ratabbut33% (i.e., one third

of the packets to be delivered). The same applies if the m&tgenerates data faster
than it can be transported to the sink nodes. In this caséngader all packets will
prevent the sink node from decoding since it cannot gathemgmdata for each gener-
ation. Also in settings where requests for aggregate indtion occur at random times
and at random nodes in the sensor network, always being @alllecode most of the
received data is beneficial. Otherwise, the request coljcbanserved after all data has
been decoded. Thus, in practical settings a smooth rec@adyisable. Moreover, en-
coding oversomepackets, as we do in ANC, leads to sparse decoding matribeseT
can be inverted with a lower complexity through, e.g., h&igialgorithms, thus leading
to lower energy consumption. In addition, with sparse mafriearly decoding occurs
with higher probability (which is the actual reason for theo®th recovery of ANC).

As a further remark, we note that there is a substantial reiffee between ANC-
STATIC and ANC-RE for a static network wittv.= 100 nodes. This is a further
indication of the importance of the selected degree digion, especially for large net-
works. Finally, we observe that GC still gives unacceptggldormance. Once again,
the selected encoding strategy matters and its importa@ocentes apparent with in-
creasing network size.

6 Handling multiple generations via buffer management

In this section we consider a more general scenario, whetesngenerate a large
number of observations, at different time instants. We be&bncept ofjienerationss
introduced in Section 3. How packets are subdivided integaions can be decided for
example based on spatial or temporal criteria. With the satial generationve refer
to the data generated within the same cluster of nodeswitain a well characterized
geographical region (over a certain period of time). Witmporal generatiomve refer
to the data generated within the same time interval by alhthges in the network: for
the sake of simplicity we consider that the first readingsllo$ensor nodes belong to



the first generation, the second readings to the seconda@mreand so on. Here, we
present a simple buffer management scheme based on tergpoeaations. This buffer
management scheme is included in the real-world implenientased in the previous
section.

MICAz nodes have very limited RAM capabilities. Sensor redey only be able
to hold a single generation in their memory at a time. Thissgegially true when
the number of nodes in the netwotk, is large. Moreover, energy consumption is an
important consideration in wireless sensor networks anthwe need to devise energy
efficient solutions to handle multiple generations withgh&en memory constraints. In
case multiple generations can be stored in the RAM, theuiatig discussion still holds
with minimal modifications.

Let NV be the number of nodes in the network, which we consider tobeected.
Our ANC protocol is used to select the degree distributianefocoding. Moreover,
assume that our nodes are processing the first generatiateofAs per our ANC algo-
rithm, as nodes receive new codewords (i.e., new packkegetare stored in the main
buffer in RAM (one codeword, one row in the buffer). When anf@ission opportu-
nity occurs, the rows in the buffer are randomly combined iatated by the degree
distribution in use, following the procedure we describethie previous sections.

For the sake of explanation, consider now the instant in wligiven node re-
covers the first generation. Note that any further packstribde may receive for this
generation will be discarded since the packet can not bevative. Also, the packets
currently stored in the buffer (i.e., the recovered gen@natcan be safely copied to
the flash memory as the decoding process is complete for émisrgtion at this spe-
cific node. However, these packets are not deleted right dnway the buffer, but are
rather kept there to further assist the node’s neighbotshidnze not yet recovered the
generation.

Upon the complete decoding of the old data, the node cangmtacessing a new
generation (i.e., encoding new readings) but the neighbbtkis node that are still
using the old generation might need additional packets talibe to decode. In order
to help these nodes, we propose a novel algorithm referredr®asooperative dis-
tribution managemeniAccording to this scheme, the node successively overswtite
old data in the RAM, with data from the new generation, fromtip row of the buffer
to the bottom one. When information belonging to the new gaien is received, the
node in question stores it in the first row of its buffer. Thd phacket that previously
occupied this position in the buffer is not deleted, but itasher combined with the
packet in the last position of the buffer, as shown in Fig.gurie on the left. Upon the
reception of subsequent packets belonging to the new gémeréne node sequentially
stores them in the second, third, etc. position of the buffecombining the old packets
in these positions with the old packets that are still in thffdy. This combination is
done in such a way that the degrees of the old packets thaetieed in the buffer
resemble, as close as possible, the power of two sequeBc¢, 8, . . ., see Fig. 7, fig-
ure in the middle. This specific sequence allows a sufficianiety of degrees among
the retained old packets to be able to send out packets efeiiff degrees if necessary.
As long as neighbors require packets from the old generatiemode may alternately
send out packets from the new and the old generation.



We now consider the nodes which may receive packets belgrgithe new gen-
eration without, however, having switched to it yet. Thesdas may just store these
packets in an extra buffer of small size for later use (in casgh additional storage
space is available). This allows a prompt switch to the nemeggtion, as soon as the
recovery of the old generation is complete.

We observe that the above mechanism extensively uses theRébry, whereas
the flash memory is written only upon the complete recoverg given generation of
data. Limiting the access to the flash is an important conaioba as it is characterized
by rather long writing times as well as substantial energysconption (compared to
writing to the RAM).

,oeneration] degree 1 generation i+1 generation i+1

/ generation i degree 1 generation i+1 generation i+1

I generation i degree 1 generation i+1 generation i+1
generation i degree 1 generation i+1 v generation i+1

generation | degree I generation | degree 1 generation i+1

generation i degree 1 generation i degree 1 generation i+1

Cohbine generationi  degree L generation i degree 1 generation i+1

generation | degree 1 generation | degree 1 generation i+1

generation | degree 1 generation i degree 1 generation i  degree 2

generation i degree 1 generation i degree 2 generation i degree 4

P generation | degree 1 generation | degree 4 generation i degree 5 (->8)

Fig. 7. Example of buffer management. Generatias fully recovered, the new generation- 1
is being processed. Packets belonging to generatoa still retained, through their linear com-
bination, upon the reception of packets pertaining to thve generation.

We intend to investigate further buffer management scheémtfesure work. In par-
ticular, we believe that a more flexible scheme that is abtatalle multiple generations
simultaneously, while adhering to the same memory comgsainay improve the per-
formance. Writing coded data to the flash is undesirablessinceeds to be rewritten
once it has be decoded. However, it is not necessary to otitly futl generations to the
flash in a single pass. As partial data is recovered, it canriitewto the flash in case
it is not needed very often for the decoding of further pasKet a given generation.
Note that reading from the flash is substantially less experiban writing to it. We
also intend to explore spatial generations, coded overdhkats of a specific region.

7 Conclusions

In this paper we proposed a novel network coding-based ighgomwith adaptive
degree distribution, with the aim of achieving a high degoéelata persistence in
static and mobile networks. We believe this is an importast fitep towards a prac-
tical self-adaptive coding algorithm for sensor netwoikfe. provide insights into the
relationship between degree distributions and networkilitptWe also characterized
the performance of different encoding schemes and relagid distributions through
simulations and experiments on real nodes.

A more thorough analysis on how to adapt the degree disiwitbid the specific
dynamics of the network (and how to “measure” these dyngmscstill necessary and



kept under study. Moreover, buffer management is anothgoitant avenue for future
research, which we briefly introduced here and which neetis taddressed further to
successfully distribute multiple snapshots of data indargtworks.
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