Skip to main content

Tracking Dynamic Boundary Fronts Using Range Sensors

  • Conference paper
Wireless Sensor Networks (EWSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4913))

Included in the following conference series:

  • 1869 Accesses

Abstract

We examine the problem of tracking dynamic boundaries occurring in natural phenomena using range sensors. Two main challenges of the boundary tracking problem are energy-efficient boundary estimations from noisy observations and continuous tracking of the boundary. We propose a novel approach which uses a regression-based spatial estimation technique to determine discrete points on the boundary and estimates a confidence band around the entire boundary. In addition, a Kalman Filter-based temporal estimation technique is used to selectively refresh the estimated boundary to meet the accuracy requirements. Our algorithm for dynamic boundary tracking (DBTR) combines temporal estimation with an aperiodically updated spatial estimation and provides a low overhead solution to track boundaries without requiring prior knowledge about the dynamics of the boundary. Experimental results demonstrate the effectiveness of our algorithm and estimated confidence bands achieve loss of coverage of less than 2 − 5% for a variety of boundaries with different spatial characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Elsevier Journal of Computer Networks 38, 393–422 (2002)

    Article  Google Scholar 

  2. Nowak, R., Mitra, U.: Boundary Estimation in Sensor Networks: Theory and Methods. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Ding, M., Chen, D., Xing, K., Cheng, X.: Localized Fault-Tolerant Event Boundary Detection in Sensor Networks. IEEE INFOCOM 2, 902–913 (2005)

    Google Scholar 

  4. Hsieh, C.H., Jin, Z., et al.: Experimental validation of an algorithm for cooperative boundary tracking. In: Proc. of American Control Conference (2005)

    Google Scholar 

  5. Zink, M., Westbook, D., Abdallah, S., Horling, B.: Meteorological command and control: An end-to-end architecture for a hazardous weather detection sensor network. In: EESR. Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Services (2005)

    Google Scholar 

  6. Utkin, A.B., Lavrov, A.V., Costa, L., Simoes, F., Vilar, R.: Detection of Small Forest Fires by Lidar. Applied Physics B 74, 77–83 (2002)

    Article  Google Scholar 

  7. Lavrov, A., Vilar, R.: Application of lidar at 1.54 μm for forest fire detection. Remote sensing for earth science, ocean, and sea ice applications 3868, 473–477 (1999)

    Google Scholar 

  8. Duttagupta, S., Ramamritham, K., Kulkarni, P.: Tracking dynamic boundaries using sensor networks. In: IIT Bombay, CSE department Technical Report TR-CSE-2007-7 (2007)

    Google Scholar 

  9. Duttagupta, S., Ramamritham, K., Ramanathan, P.: Distributed Boundary Estimation using Sensor Networks. In: The 3rd IEEE Conf. on Mobile Ad-hoc and Sensor Systems (2006)

    Google Scholar 

  10. Härdle, W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  11. Gasser, T., Kneip, A., Kohler, W.: A Flexible and Fast Method for Automatic Smoothing. Journal of the American Statistical Association 86(415), 643–652 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Levis, P., Lee, N., Woo, A., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable simulation of entire tinyos applications. In: Sensys. Proc. of 1st ACM Conf. on Embedded Networked Sensor Systems (November 2003)

    Google Scholar 

  13. Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., Madden, S.: Distributed Regression: an Efficient Framework for Modeling Sensor Network Data. In: IPSN (2004)

    Google Scholar 

  14. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-based Approximate Querying in Sensor Networks. VLDB Journal (2005)

    Google Scholar 

  15. Liu, J., Chu, M., Liu, J.: Distributed State Representation for Tracking problems in Sensor Networks. In: IPSN (2004)

    Google Scholar 

  16. Coates, M.: Distributed Particle Filtes for Sensor Networks. In: IPSN (2004)

    Google Scholar 

  17. Manfredi, V., Mahadevan, S., Kurose, J.: Switching Kalman Filters for Prediction and Tracking in an Adaptive Meteorological Sensing Network. In: SECON. IEEE Conference on Sensor and Ad Hoc Communications and Networks (2005)

    Google Scholar 

  18. Liao, P., Chang, M., Kuo, C.J.: Contour Line Extraction with Wireless Sensor Networks. In: IEEE Conference on Communications (2005)

    Google Scholar 

  19. Singh, A., Nowak, R., Ramanathan, P.: Active Learning for Adaptive Mobile Sensing Networks. In: IPSN (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Verdone

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duttagupta, S., Ramamritham, K., Kulkarni, P., Moudgalya, K.M. (2008). Tracking Dynamic Boundary Fronts Using Range Sensors. In: Verdone, R. (eds) Wireless Sensor Networks. EWSN 2008. Lecture Notes in Computer Science, vol 4913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77690-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77690-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77689-5

  • Online ISBN: 978-3-540-77690-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics