Skip to main content

Photo-Realistic Visualization for the Blast Wave of TNT Explosion by Grid-Based Rendering

  • Conference paper
High-Performance Computing (ISHPC 2005, ALPS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4759))

  • 795 Accesses

Abstract

After the detonation of a solid high explosive, the material has extremely high pressure keeping the solid density and expands rapidly driving strong shock wave. In order to investigate the blast wave propagation driven by the 32-kg TNT explosion of the underground magazine a three-dimensional simulation is performed with a stable and accurate numerical scheme without a special modeling for the expansion process of detonation product gas. The compressible fluid equations are solved by a fractional step procedure which consists of the advection phase and non-advection phase. The former employs the Rational function CIP scheme in order to preserve monotone signals and the latter is solved by IDO (Interpolated Differential Operator) scheme for achieving the accurate calculation. For this simulation results, photo-realistic visualization is achieved with combination of volume rendering with isosurface rendering on grid computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comp. Phys. 11, 38–69 (1973)

    Article  Google Scholar 

  2. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Osher, S., Chakravarthy, S.: High Resolution Schemes and the Entropy Condition. SIAM J. Num. Anal. 21, 984–995 (1984)

    MathSciNet  Google Scholar 

  4. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comp. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Yang, H.: An artificial compression method for ENO schemes: The slope modification method. J. Comp. Phys. 89, 125–160 (1990)

    Article  MATH  Google Scholar 

  6. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comp. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Harten, A.: ENO schemes with subcell resolution. J. Comp. Phys. 83, 148–184 (1987)

    Article  MathSciNet  Google Scholar 

  8. Shu, C.W., Oshert, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comp. Phys. 83, 32–78 (1989)

    Article  MATH  Google Scholar 

  9. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comp. Phys. 54, 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comp. Phys. 54, 174–201 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brode, H.L.: Numerical Solution of spherical Blast waves. Journal of Applied physics 26, 766–775 (1955)

    Article  MathSciNet  Google Scholar 

  12. Brode, H.L.: Blast wave from a spherical charge. Phisics Of Fluid 2, 217–229 (1959)

    Article  MATH  Google Scholar 

  13. Kury, J.W., Hornig, H.C., Lee, E.L., McDonnel, J.W., Ornellas, D.L., Finger, M., Starnge, F.M., Wilkins, M.L.: Metal Acceleration by Chemical explosives. In: Fourth Symposium on detonation, pp. 3–13 (1965)

    Google Scholar 

  14. Yabe, T., Aoki, T.: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Computer Physics Communications 66, 219–232 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dobratz, B.M.: Properties of Chemical Explosives and Explosive Simulants LLNL Explosives Handbook UCRL-52997, Distribution Category UC-45

    Google Scholar 

  16. Bakuhatsu-eikyou-hyouka-iinkai-houkoku-sho, All Japan Association for security of explosives (2003)

    Google Scholar 

  17. http://www.povray.org

  18. Rasmussen, N., Nguyen, D.Q., Geiger, W., Fedkiw, R.: Smoke Simulation for Large Scale Phenomena. SIGGRAPH 22, 793 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jesús Labarta Kazuki Joe Toshinori Sato

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kato, K., Aoki, T., Saburi, T., Yoshida, M. (2008). Photo-Realistic Visualization for the Blast Wave of TNT Explosion by Grid-Based Rendering. In: Labarta, J., Joe, K., Sato, T. (eds) High-Performance Computing. ISHPC ALPS 2005 2006. Lecture Notes in Computer Science, vol 4759. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77704-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77704-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77703-8

  • Online ISBN: 978-3-540-77704-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics