Abstract
In this paper, a fast algorithm is proposed to calculate k th power of an n×n Boolean matrix that requires O(kn 3 p) addition operations, where p is the probability that an entry of the matrix is 1. The algorithm generates a single set of inference rules at the beginning. It then selects entries (specified by the same inference rule) from any matrix A k − 1 and adds them up for calculating corresponding entries of A k. No multiplication operation is required. A modification of the proposed algorithm can compute the diameter of any graph and for a massive random graph, it requires only O(n 2(1-p)E[q]) operations, where q is the number of attempts required to find the first occurrence of 1 in a column in a linear search. The performance comparisons say that the proposed algorithms outperform the existing ones.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auber, D., Delest, M., Domenger, J., Dulucq, S.: Efficient drawing of RNA secondary structure. Journal of Graph Algorithms and Applications 10(2) (2006)
Li, N., Guo, Y., Zheng, S., Tian, C., Zheng, J.: A matrix based fast calculation algorithm for estimating network capacity of MANETS. In: Proceedings of the 2005 Systems Communications (ICW), IEEE Computer Society, Los Alamitos (2005)
Zhou, M., Cui, Y.: Constructing and visualizing gene relation networks, An International Journal on Computational Molecular Biology (2004) ISBN In Silico Biology, 4, 0026
Lipschutz, S.: Data Structures and Algorithm. In: Schaum’s outline series, Mc-Graw Hill, New York (2000)
Strassen, V.: Gaussian elimination is not optimal. Numerical Mathematics 13, 354–356 (1969)
Burgisser, P., Clausen, M., Shokrollahi, M.A.: Algebric complexity theory, Grundlehren der Mathematischen Wissenschaften, vol. 315. Springer, Heidelberg (1997)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. of Symbolic Computation 9, 251–280 (1990)
Bilardi, G., D’Alberto, P., Nicolau, A.: Fractal matrix multiplication: A case study on probability of cache performance. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 26–38. Springer, Heidelberg (2001)
Robinson, S.: Toward an optimal algorithm for matrix multiplication. SIAM news 38(9) (2005)
Bollobas, B.: The diameter of random graphs. IEEE Trans. Inform. Theory 36(2), 285–288 (1990)
Floyd, Robert, W.: Algorithm 97: shortest path. Communications of the ACM 5(6), 345 (1962)
Cormen, T.H., Leiserson, C.E., Ronald, L.R.: Introduction to Algorithms, 2nd edn. The MIT press and McGraw-Hill book company, Cambridge (2001)
Bollobas, B.: The Evolution of Sparse Graphs. In: Graph Theory and Combinatorics, pp. 35–57. Academic Press, London-New York (1984)
Aiello, W., Chung, F., Lu, L.: Random Evolution of Massive Graphs. In: Handbook of Massive Data Sets, pp. 97–122. Kluwer, Dordrecht (2002)
Lu, L.: The diameter of random massive graphs. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.912–921. ACM/SIAM Press (2000)
Marinari, E., Semerjian, G.: On the number of circuits in random graphs, J. of Statistical Mechanics: Theory and Experiment, P06019 (2006) DOI:10.1088/1742 5468/2006/06/P06019
Ross, S.M.: Introduction to Probability Models, 8th edn. Academic Press, London (2002)
Bertsekas, D., Gallager, R.: Data Netwroks, ex. 2.13, 2nd edn. Prentice Hall, New Jersey (1992)
Yates, R.D., Goodman, D.J.: Probability and Stochastic Processes, B.6 (2005)
Chung, F., Lu, L.: The diameter of sparse random graph. J. of Advances in Applied Mathematics 26(4), 257–279 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Razzaque, M.A., Hong, C.S., Abdullah-Al-Wadud, M., Chae, O. (2008). A Fast Algorithm to Calculate Powers of a Boolean Matrix for Diameter Computation of Random Graphs. In: Nakano, Si., Rahman, M.S. (eds) WALCOM: Algorithms and Computation. WALCOM 2008. Lecture Notes in Computer Science, vol 4921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77891-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-77891-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77890-5
Online ISBN: 978-3-540-77891-2
eBook Packages: Computer ScienceComputer Science (R0)