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Abstract. We survey some of the main results regarding the complex-
ity and expressive power of Live Sequence Charts (LSCs). We first de-
scribe the two main semantics given to LSCs: a trace-based semantics
and an operational semantics. The expressive power of the language is
then examined by describing translations into various temporal logics.
Some limitations of the language are also discussed. Finally, we survey
complexity results, mainly due to Bontemps and Schobbens, regarding
the use of LSCs for model checking, execution, and synthesis.

1 Introduction

Live Sequence Charts (LSCs, or LSC for the language) [9] constitute a visual for-
malism for inter-object scenario-based specification and programming. The lan-
guage extends classical Message Sequence Charts (MSC) [21], mainly by adding
universal and existential modalities. LSC distinguishes between behaviors that
may happen in the system (existential, cold) and those that must happen (uni-
versal, hot). A universal chart contains a prechart, which specifies the scenario
which, if successfully executed, forces the system to satisfy the scenario given in
the actual chart body.

An executable (operational) semantics for LSC was defined in [18]. Thus,
LSC can be viewed not only as a specification language but also as a high-level
programming language for reactive systems.

Since its original definition, the language has been the subject of much work,
e.g., in the contexts of scenario-based testing [25, 26], synthesis [3, 13, 15], execu-
tion (play-out) [18], formal verification [22, 33], specification and verification of
hardware [6], telecommunication systems [8], biological systems [11], specifica-
tion mining [27], and compilation into aspects [12, 29]. Also, recently, in [16], a
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UML2 compliant and slightly generalized variant of LSC was defined, allowing
the embedding of LSC into the UML standard [35].

In this paper we survey some results regarding the expressive power and
succinctness of the language, as well as complexity results for various problems
related to using LSC for specification and programming.

2 Language Overview

The LSC language was originally defined by Damm and Harel in [9]. The lan-
guage has two types of charts: universal (annotated by a solid borderline) and
existential (annotated by a dashed borderline). Universal charts are used to spec-
ify restrictions over all possible system runs. A universal chart typically contains
a prechart, that specifies the scenario which, if successfully executed, forces the
system to satisfy the scenario given in the actual chart body. Existential charts
specify sample interactions between the system and its environment, and must
be satisfied by at least one system run. They thus do not force the application to
behave in a certain way in all cases, but rather state that there is at least one set
of circumstances under which a certain behavior occurs. Existential charts can
be used to specify system tests, or simply to illustrate longer (non-restricting)
scenarios that provide a broader picture of the behavioral possibilities to which
the system gives rise.

Most constructs in the language, e.g., messages and conditions, also have
a hot/cold modality. Hot behaviors are mandatory and must be satisfied by
any system run. Cold behaviors, on the other hand, are provisional, and may
be satisfied. For example, a hot message must eventually be sent, while a cold
message may or may not be sent.

An example of a universal LSC is given in Figure 1. The chart in the example
is adopted from [24], and is part of a specification for a cellular phone. The
chart requires that whenever the user closes the Cover, the Chip will send the
message StartRing(Silent) to the Speaker and later the speaker will turn
silent as designated by the self message Sound(Silent). The Display will set
its state to Time and later set its background to Green. An LSC induces a
partial order that is determined by the order along an instance line, by the fact
that a message can be received only after it is sent, and by taking into account
that a synchronous message blocks the sender until receipt. Thus in Figure 1, the
message ChangeBackground(Green) must occur after message SetState(Time),
but both are unordered with respect to the messages StartRing(Silent) and
Sound(Silent).

An example of an existential LSC is given in Figure 2. The chart states
that there is a possible run of the system where the user presses Click on the
Send Key and eventually the Chip receives an ACK from the environment ENV.
The SYNC condition restricts the order between the two messages, which are
otherwise unordered.

We give here a restricted and simplified trace-based semantics for a kernel
subset of LSC. The original LSC semantics was given in [9]. In subsequent work



Fig. 1. An example of a universal chart

Fig. 2. An example of an existential chart

the semantics of (restricted subsets or extensions of) the language was given
using temporal logics (see, e.g., [24]) or various types of automata (see, e.g., [16,
23]). An operational semantics, explicated in the play-out algorithm, was given
in [18].

2.1 Basic Definitions

The following definitions are adopted from [24]. We assume the LSC specifica-
tion relates to an object system composed of a set of objects O = {O1 . . . On}.
An object system corresponds to an implementation, and our goal in providing
semantics for LSCs is to define when a given object system satisfies an LSC
specification. The instance identifiers in the LSC charts refer to objects from O,
and possibly also the environment, denoted env. The LSC specifies the behavior
of the system in terms of the message communication between the objects in the
system. We want to define the notion of satisfiability of an LSC specification.
In other words, we want to capture the languages L ⊆ A∗ ∪ Aω generated by
the object systems that satisfy the LSC specification. The alphabet A used de-



fines message communication between objects, A = O × (O.Σ), where Σ is the
alphabet of messages.

An LSC chart is constructed from a set of instances, a set of locations in
those instances, a set of messages, and a mapping from messages to locations.
Each chart also has an activation mode, either universal or existential. Similarly,
each message has a temp function, defining its temperature, as either hot or cold.
For now, a chart is assumed to have a single message acting as the activation
message. Later on this notion will be extended to a full prechart.

Let inst(m) be the set of all instance-identifiers referred to in chart m.
With each instance i we associate a finite number of locations dom(m, i) ⊆
{0, . . . , l max(i)}. We collect all locations of m in the set

dom (m) = {〈i, l〉 | i ∈ inst(m) ∧ l ∈ dom(m, i)}.

The messages appearing in m are triples

Messages(m) = dom(m)×Σ × dom(m),

where (〈i, l〉, σ, 〈i′, l′〉) corresponds to instance i, while at location l, sending σ
to instance i′ at location l′. Each location can appear in at most one message
in the chart. The relationship between locations and messages is given by the
mapping

msg(m) : dom(m) → Messages(m)

The msg function induces two Boolean predicates send and receive. The predi-
cate send is true only for locations that correspond to the sending of a message,
while the predicate receive is true only for locations that correspond to the re-
ceiving of a message. We define the binary relation R(m) on dom(m) to be the
smallest relation satisfying the following axioms and closed under transitivity
and reflexivity:

– order along an instance line:

∀〈i, l〉 ∈ dom(m), l < l max(i) ⇒ 〈i, l〉R(m)〈i, l + 1〉

– order induced from message sending:

∀msg ∈ Messages(m),msg = (〈i, l〉, σ, 〈i′, l′〉) ⇒

〈i, l〉R(m)〈i′, l′〉
– messages are synchronous; they block the sender until receipt:

∀msg ∈ Messages(m),msg = (〈i, l〉, σ, 〈i′, l′〉) ⇒

〈i′, l′〉R(m)〈i, l + 1〉



We say that the chart m is well-formed if the relation R(m) is acyclic. We
assume all charts to be well-formed, and use ≤m to denote the partial order
R(m).

We denote the preset of a location 〈i, l〉 containing all elements in the domain
of a chart smaller than 〈i, l〉 by

•〈i, l〉 = {〈i′, l′〉 ∈ dom(m)|〈i′, l′〉 ≤m 〈i, l〉}.
We denote the partial order induced by the order along an instance line by

≺m; thus 〈i, l〉 ≺m 〈i′, l′〉 iff i = i′ and l < l′.
A cut through m is a set c of locations, one for each instance, such that for

every location 〈i, l〉 in c, the preset •〈i, l〉 does not contain a location 〈i′, l′〉 such
that 〈j, lj〉 ≺m 〈i′, l′〉 for some location 〈j, lj〉 in c. A cut c is specified by the
locations in all of the instances in the chart:

c = (〈i1, l1〉, 〈i2, l2〉, ..., 〈in, ln〉)
For a chart m with instances i1, ..., in the initial cut c0 has location 0 in all the
instances. Thus, c0 = (〈i1, 0〉, 〈i2, 0〉, ..., 〈in, 0〉). We denote cuts(m) the set of all
cuts through the chart m.

For chart m, some 1 ≤ j ≤ n and cuts c, c′, with

c = (〈i1, l1〉, 〈i2, l2〉, ..., 〈in, ln〉), c′ = (〈i1, l′1〉, 〈i2, l′2〉, ..., 〈in, l′n〉)
we say that c′ is a 〈j, lj〉-successor of c, and write succm(c, 〈j, lj〉, c′), if c and c′

are both cuts and
l′j = lj + 1 ∧ ∀i 6= j, l′i = li

Notice that the successor definition requires that both c and c′ are cuts, so that
advancing the location of one of the instances in c is allowed only if the obtained
set of locations remains unordered.
A run of m is a sequence of cuts, c0, c1, . . . , ck, satisfying the following:

– c0 is an initial cut.
– for all 0 ≤ i < k, there is 1 ≤ ji ≤ n, such that succm(ci, 〈ji, lji〉, ci+1).
– in the final cut ck all locations are maximal.

Runs(m) is the set of all runs of m.
Assume the natural mapping f between (dom(m) ∪ env) × Σ × dom(m) to

the alphabet A, defined by

f(〈i, l〉, σ, 〈j, l′〉) = (Oi, Oj .σ)

Intuitively, the function f maps a location to the sending object and to the
message of the receiving object. With this notation in mind, f(Messages(m))
will be used to denote the letters in A corresponding to messages that are re-
stricted by chart m:

f(Messages(m)) = {f(v) | v ∈ Messages(m)}



Definition 1. Let c = c0, c1, ..., ck be a run. The execution trace, or simply the
trace of c, written w = trace(c), is the word w = w1 ·w2 · · ·wk over the alphabet
A, defined by:

wi =
{

f(msg(m)(〈j, lj〉)) if succm(ci−1, 〈j, lj〉, ci) ∧ send(〈j, lj〉)
ε otherwise

We define the trace language generated by chart m, Ltrc
m ⊆ A∗, to be

Ltrc
m = {w | ∃(c0, c1, ..., ck) ∈ Runs(m) s.t. w = trace(c0, c1, ..., ck)}

There are two additional notions that we associate with an LSC, its mode
and its activation message. These are defined as follows:

mod : m → {existential, universal}
amsg : m → dom(m)×Σ × dom(m)

The activation message of a chart designates when a scenario described by
the chart should start, as we describe below. The charts and the two additional
notions are now put together to form a specification. An LSC specification is a
triple

LS〈M, amsg, mod〉,
where M is a set of charts, and amsg and mod are the activation messages and
modes of the charts, respectively.

The language of the chart m, denoted by Lm ⊆ A∗∪Aω, is defined as follows:
For an existential chart, mod(m) = existential, we require that the activation

message is relevant (i.e., sent) at least once, and that the trace will then satisfy
the chart:

Lm =
{
w = w1 · w2 · · · | ∃i0, i1, ..., ik and ∃v = v1 · v2 · · · vk ∈ Ltrc

m , s.t.
(i0 < i1 < ... < ik) ∧ (wi0 = f(amsg(m))) ∧
(∀j, 1 ≤ j ≤ k,wij = vj) ∧
(∀j′, i0 ≤ j′ ≤ ik, j′ 6∈ {i0, i1, ..., ik} ⇒ wj′ 6∈ f(Messages(m)))}

The formula requires that the activation message is sent once
(wi0 = f(amsg(m))), and then the trace satisfies the chart; i.e., there is a
subsequence belonging to the trace language of chart m (v = v1 · v2 · · · vk =
wi1 · wi2 · · ·wik

∈ Ltrc
m ), and all the messages between the activation message

until the end of the satisfying subsequence (∀j′, i0 ≤ j′ ≤ ik) that do not be-
long to the subsequence (j′ 6∈ {i0, i1, ..., ik}) are not restricted by the chart m
(wj′ 6∈ f(Messages(m))).

For a universal chart, mod(m) = universal, we require that each time the
activation message is sent the trace will satisfy the chart:

Lm = {w = w1 · w2 · · · | ∀i, wi = f(amsg(m)) ⇒ ∃i1, i2, ..., ik and
∃v = v1 · v2 · · · vk ∈ Ltrc

m , s.t. (i < i1 < i2 < ... < ik) ∧
(∀j, 1 ≤ j ≤ k,wij = vj) ∧
(∀j′, i ≤ j′ ≤ ik, j′ 6∈ {i1, ..., ik} ⇒ wj′ 6∈ f(Messages(m)))}



The formula requires that after each time the activation message is sent
(∀i, wi = f(amsg(m))), the trace will satisfy the chart m (this is expressed in
the formula in a similar way to the case for an existential chart.)

Now come the main definitions, which finalize the semantics of the language
by connecting it with an object system:

Definition 2. A system S satisfies the LSC specification LS = 〈M, amsg, mod〉,
written S |= LS, if:

1. ∀m ∈ M, mod(m) = universal ⇒ LS ⊆ Lm

2. ∀m ∈ M, mod(m) = existential ⇒ LS ∩ Lm 6= ∅

In this short introduction, we assumed that a chart has an activation message.
The extension of this notion to a prechart is omitted here. Informally, a chart
containing a prechart must be satisfied whenever its prechart is satisfied. We also
assumed all messages are hot, therefore all cuts must progress. However, when
introducing cold messages, a cut containing only cold messages may progress,
but need not.

The kernel language of LSC, introduced in [9], contains several constructs,
in addition to the messages formally introduced above. These include:

– Conditions, which act as requirements on the state of the system at a given
point in time. Like messages, conditions too can have a hot/cold modality,
defining the effect of a false condition. A false hot condition is a violation of
the requirements, whereas a false cold condition merely induces an immediate
normal exit from the chart (or enclosing subchart).

– Subcharts are the main structuring mechanism in the LSC language. A sub-
chart is a well-formed fragment of a chart. Along with conditions, it can also
be used to define branching constructs like if-then-else.

– Variables, whose scope is local to an LSC. One can use assignments to assign
values to variables. Expressions within conditions may include variables.

2.2 Different Variants and Additional Constructs

The above definitions constitute a kernel subset of the LSC language. A number
of variants and extensions have been suggested and used in different kinds of
work and in different contexts. We list some of these variants and extensions
below.

The first variation to be discussed refers to the question of how often a
universal LSC should be activated. The most general case is that of an invariant
LSC, which calls for the LSC to be activated whenever the prechart is completed,
regardless of the state of the system. This means that multiple copies of the same
chart may be active simultaneously, if the prechart is completed several times.
Two restrictions to this mode are initial and iterative (see, for example, in [5]).
The initial mode indicates that the LSC is activated at system start only; i.e., it
is intended to describe a start-up or initialization sequence. The iterative mode



allows only one incarnation of the chart at a time, i.e., as long as a chart is active
its prechart is not monitored for further satisfactions.

Another variant, suggested in [18], is that of strict vs. tolerant (or weak)
semantics. A strict LSC restricts the occurrence of the messages used in the
LSC to exactly those points in time where they are supposed to occur according
to the scenario. Any message appearing out-of-order in a strict LSC is consid-
ered a violation. In the weak interpretation, the specification is satisfied if each
necessary message occurs at least once where it is supposed to, and additional
occurrences of it are ignored.

A variety of extensions have also been suggested to the kernel subset of the
language. We now list some of them.

– Symbolic messages were introduced in [30]. In a symbolic message, the ar-
guments passed by the message are symbolic, thus a single message in an
LSC can stand for several different instantiations of it in the system. The
actual arguments used in a specific run can be stored in LSC-local variables,
so that they can be used again in the same chart. See also Chapter 7 in [18].

– In a real system, multiple objects can be instances of the same class. A
symbolic instance in an LSC represents an entire class, or rather, any instance
of the class, instead of a single concrete object. Symbolic instances were first
suggested in [30], and are also covered in Chapter 15 of [18].

– A co-region is a sequence of locations belonging to the same instance, in
which the partial order requirement is relaxed, i.e., locations within a co-
region may appear in any order.

– Forbidden messages and conditions were introduced in [18], allowing one to
state behaviors that are forbidden while an LSC (or a part of it) is active.
Similarly, one may add restrictions on message sending, besides the ones
derived from the LSC’s partial order, using a restricts clause.

– Timing constraints on LSCs are considered in [23] and [17]. In [23], LSCs can
be annotated by timers and by delay intervals, thus allowing one to express
timing constraints on pairs of events that are either on the same instance
line, or are connected by a message. In [17], on the other hand, a single clock
object with one property, Time, and a single method, Tick, are introduced.
This, together with the rich LSC language, suffices for specifying a wide
variety of timing constraints (see Chapter 16 of [18]).

2.3 Scenario-Based Execution

The semantics described so far is a trace-based semantics, defining when a trace
of events is in the language of the LSC specification. However, in [18, 19], the
play-out approach is presented. In this approach, the LSC specification can be di-
rectly executed, without any intermediate steps. Play-out is implemented in the
Play-Engine tool. The play-out process calls for the Play-Engine to continuously
monitor the applicable precharts of all universal charts, and whenever success-
fully completed, to execute their bodies. A full operational semantics is supplied
in Appendix A of [18], defining how an LSC specification can be executed. We
quote some of the main definitions from there.



The operational semantics is given as a transition system

Sem(S) = 〈V, V0,SD,SM ,∆[SO,SC ]〉

where V is the set of possible configurations (states) of Sem(S), V0 is the initial
configuration, SD ⊆ SU is the set of driving LSCs, SM ⊆ SU ∪ SE is the set of
monitored LSCs, and ∆ ⊆ V×(E∪⋃

L∈S EL)×V is the set of allowed transitions.
We require that SD ∩ SM = ∅.

A state V ∈ V is defined as

V = 〈RL,ML,Violating〉

where RL is a set of live copies of ‘driving’ LSCs, ML is a set of live copies of
monitored LSCs, and Violating indicates by True or False whether the state is
a violating one.

The initial configuration contains no copies of driving LSCs and no copies of
monitored LSCs, and is defined as:

V0 = 〈∅, ∅, False〉

The transition relation ∆ is parameterized by two sets. The first, SO, is the
set of original LSCs to which ∆ should be applied. The second, SC , is the set of
live copies that currently exist. This set contains only copies of LSCs from SO.
The two sets are instantiated with either (SD,RL) or (SM ,ML).

∆ is described as a set of rules to its set parameters and to Violating with
respect to a given event e. Since the set parameters are instantiated also by RL
and ML, which are taken from a state V , the result of applying ∆ is a new state
V ′ consisting of the modified components. In other words, ∆ defines the result
of executing an event e in a given system state. We skip the formal definition of
∆. The idea behind its rules is to advance any cut that needs to be advanced by
executing e, to open new live copies of charts for which the prechart has become
relevant, and to update Violating to state whether there has been a violation.

The same definitions are used in [18] both for describing how a specification
can be used for testing (quite similarly to the trace-based semantics described
above), and for actual execution. The execution mechanism works in phases of
step and super-step. The input to a step is a system event e. The procedure for
a step phase consists of applying the transition relation onto the event e and, if
the event represents a property change, changing the state of the object model
according to the new value in the message.

In the super-step phase, the Play-Engine continuously executes the steps
associated with internal events — i.e., those that do not originate with the user,
the environment, the Clock or external objects — until it reaches a ‘stable’ state
where no further such events can be carried out.

The execution algorithm proposed in [18] is näıve, in the sense that when
facing multiple choices for a step, none of them causing an immediate violation,
it chooses one arbitrarily. Its choice might lead to a contradiction in the future,
while perhaps there could have been a different choice that would have avoided



it. This problem is addressed by the smart play-out algorithm proposed in [14],
in which a legal super-step is found using a model checker. The specification
is translated into a model, and the model checker is fed with this model along
with the claim that no legal super-step exists. If one does exist, it will be given
as a counter-example to the claim. In [20] the problem is translated into an AI
planning problem, and an extended planner is used in order to find all legal
supersteps from a given system state, up to a predefined length.

The operational semantics given above expresses the same ideas as the trace-
based semantics of section 2.1, but in a manner more suitable for execution.
The operational semantics somewhat restricts the trace-based semantics to those
cases that are interesting in the context of execution. In a sense, all “interesting”
traces can be generated by the operational semantics. When equipped with the
smart play-out approach, it is also sound, in the sense that every supserstep
generated by it is also a legal trace in the trace-based semantics.

The Play-Engine [18] is an interpreter based execution engine for an LSC
specification. The specification is executed directly, with no intermediate code
being generated. An implementation of play-out by compilation into aspects
was suggested in [29] and is implemented in a compiler called S2A [12]. This
work is defined for the slightly generalized and UML2-compliant variant of LSC
given in [16], in which, unlike the version supported by the Play-Engine where
precharts are monitored and main-charts are executed, the hot/cold modality is
orthogonal to a new monitor/execute modality.

3 Expressive Power

The expressive power of LSC was studied in [3, 10, 13, 24] by suggesting transla-
tions from fragments of the language into various Temporal Logics.

A first embedding of a kernel subset of the language (which omits variables,
for example) into CTL∗ was given in [13]. For this kernel subset the embedding is
a strict inclusion, since given the single level quantification mechanism of LSCs,
the language cannot express general formulas with alternating path quantifiers.1

This embedding was improved in [24] to support a wider subset of the lan-
guage and in a more efficient way. Specifically, it was shown that existential
charts can be expressed using the branching temporal logic CTL, while univer-
sal charts are in the intersection of linear temporal logic and branching temporal
logic LTL ∩ CTL. Below we give the basic and then the improved explicit trans-
lations from [24].

Definition 3 ([24]). Let w = m1m2m3 . . . mk be a finite trace. Let R =
{e1, e2, e3 · · · el} be a set of events. The temporal logic formula φR

w is defined
as:

φR
w = NU (m1 ∧ (X (NU (m2 ∧ (X(NU(m3 . . .))))))) ,

1 It shouldn’t be too difficult to extend LSCs to allow certain kinds of quantifier
alternation, as noted in [9]. However, as in [9], this was not done there either, since
it was judged to have been too complex and unnecessary for real world usage of
sequence charts.



where the formula N is given by N = ¬e1 ∧ ¬e2 . . . ∧ ¬el.

Definition 4 ([24]). Let LS = 〈M, amsg,mod〉 be an LSC specification. For a
chart m ∈ M , we define the formula ψm as follows:

– If mod(m) = universal, then ψm = AG
(
amsg(m) → X

(∨
w∈Ltrc

m
φR

w

))
.

– If mod(m) = existential, then ψm = EF
(∨

w∈Ltrc
m

φR
w

)
.

(for a universal chart m, R includes the events appearing in the prechart and in
the main chart.)

In the above, the formula for a universal chart is in LTL. However, it can be
large, due to the possibility of having many different traces for the chart, which
affects the number of clauses in the disjunction, and also due to the similarity
of clauses at the different sides of the implication operator. In the improved
translation given below, the resulting temporal logic formulas are much more
succinct, i.e., polynomial vs. exponential in the number of locations.

We consider the case where both the prechart and the main chart consist
only of message communication, and denote by p1, · · · pk the events appearing in
the prechart, and by m1, · · ·ml the events appearing in the main chart. Denote
by ei any of these events, either in the prechart or in the main chart. We write
ei ≺ ej if ei precedes ej in the partial order induced by the chart, and ei ⊀ ej if
ei and ej are unordered.

Definition 5 ([24]).

ψm = G


(

∧
pi≺pj

φpi,pj ∧
∧

∀pi,mj

φpi,mj ∧
∧

pi⊀pj

¬χpj ,pi) →

(
∧

mi≺mj

φmi,mj ∧
∧

mj is maximal

Fmj ∧
∧

∀ei,mj

¬χei,mj )




φxi,xj = ¬xjUxi

χxi,xj = (¬xi ∧ ¬xj)U(xi ∧X((¬xi ∧ ¬xj)Uxi))

Here the formula φxi,xj specifies that xj must not happen before xi, which
eventually occurs. The formula ¬χxi,xj specifies that xi must not occur twice
before xj occurs.

Note that this translation is polynomial in the number of messages appearing
in the chart, while the translation in Definition 4 may be exponential in that
number. However, the above translation assumes that a message does not appear
more than once in the same chart. Whether an efficient translation exists for the
most general case is left open in [24]. A construction given in [3] provides a
polynomial translation for the more general case of deterministic LSCs, i.e.,
where a message may occur more than once in a chart but all appearances of
the same message are ordered.



Using a characterization by Maidl for the common fragment of LTL and
CTL [28] and a theorem by Clarke and Draghicesku [7], it is shown in [24] that
the formulas given in Definition 5 have equivalent CTL formulas. Finally, [24]
considers also the extension of the above to support conditions and bounded
iterations. An explicit translation that supports these, however, is left in [24] for
future work.

A different translation of LSC into TL, which supports variables but consid-
ers activation only by activation condition and not the general case of precharts,
was given by Damm, Toben, and Westphal in [10]. To support variables, the
work defines a translation of LSC into a fragment of first-order CTL∗. Specif-
ically, a translation is defined from bounded LSCs (i.e., where conditions and
local invariants only appear in simultaneous regions with messages) into (deter-
ministic) communication sequence first-order prenex CTL∗ (DCSCTL), a syn-
tactically characterized fragment of CTL∗. The translation is shown to be tight,
i.e., a translation back from DCSCTL into LSC is constructively defined, thus
establishing an equivalence.

Restricted to messages, the two pieces of work surveyed above [10, 24] co-
incide. They consider different subsets of the LSC language. Neither of them
handles explicit time.

3.1 Limitations

As mentioned above, given the single level quantification mechanism of LSCs,
the language cannot express general formulas with alternating path quantifiers.
However, as shown in [10], the embedding of LSC into CTL∗ is strict even without
resorting to the nesting of path quantifiers. The question of whether adding
constructs not included in the above work (e.g., bounded iterations, specifically
within precharts) will make LSCs equivalent in expressive power to LTL remains
open in [10]. A similar result is provided in [1] where it is shown that the language
Σ∗aaΣω that is expressible using a deterministic Büchi automaton (DBA) and
by an LTL formula (F (a ∧Xa)) is not expressible in LSC.

4 Complexity Results

In this section we survey the complexity results for the three main applications
of LSCs, i.e., model checking, execution (play-out), and synthesis. Essentially,
all results mentioned are due to Bontemps and Schobbens in [2] and [3].

4.1 Model Checking

Our first problem is that of model-checking. In this setting, one is given a sys-
tem implementation (either centralized or distributed) in some formal language,
e.g., I/O automata, and an LSC specification, and we want decide whether the
system satisfies the specification. The complexity of this problem grows along
two axes: centralized vs. distributed systems, and closed vs. open environments
(i.e., whether the system is a stand-alone one or interacts with an environment).



Theorem 1 ([2]). Closed Centralized Model Checking (CCMC) is complete for
co-NP.

Proof. Membership in co-NP is proved by guessing a counter-example, which is
a path in the system automaton that violates an LSC.

Hardness is proved by reducing the complement of the traveling salesman
problem (CoTSP) (see [31]) to CCMC. Given a weighted graph, an automaton
is built such that a tour in the graph corresponds to a set of automata transitions.
The automaton is equipped with a counter that sums the weights of the edges
in the tour. The fact that all tours have length ≥ k is encoded in an LSC. Its
prechart is matched when all vertices have occurred exactly once, and the main
chart makes sure the value of the counter is ≥ k. A tour of length < k exists iff
the automaton violates the LSC. ut
Theorem 2 ([2]). Open centralized model checking (OCMC), closed distributed
model checking (CDMC) and open distributed model checking (ODMC) are all
complete for PSPACE.

Proof. (For CDMC) Membership is proved by building a nondeterministic
PSPACE Turing machine deciding on the complement of the distributed model
checking problem, and relying on coPSPACE=PSPACE, according to Savitch’s
theorem [32].

The hardness proof takes a DPSPACE Turing machine and builds a set of
automata, Ai, one for each cell tape. Each automaton records the letter in its
cell, and whether the tape head is located on it or not. Each transition of the
Turing machine is encoded by transitions in the relevant automaton. The LSC
states that whenever a run starts it must halt. This causes the system to satisfy
the LSC iff the Turing machine halts. ut

4.2 Reachability and Smart Play-Out

When considering the complexity of play-out, there are two main problems to
be considered, reachability, and smart play-out. In the reachability problem, an
LSC specification and a single existential LSC are given, and one wants to decide
whether, under the constraints of the former, the latter can be satisfied. In smart
play-out, the environment has executed several steps, and the system should find
a superstep, i.e., a series of steps that satisfies the specification.

Theorem 3 ([2]). Reachability is PSPACE-complete.

Proof. Membership is proved by transforming the LSC specification into an LTL
formula, Φu, and the claim that the existential formula can not be satisfied into
another LTL formula, φe, and checking whether Φu → φe is valid. This solves
the complement of the reachability problem. The solution for LTL is in PSPACE
according to [34]. Note that membership can also be proved by considering [14],
in which the problem is reduced to model-checking, which is known to be in
PSPACE.



Hardness is proved by encoding the execution of a DPSPACE Turing machine
on the blank input as an LSC specification. The existential LSC calls for the
execution to start and to halt. A halting run of the Turing machine exists iff the
existential LSC can be satisfied. ut
Theorem 4. Smart play-out is PSPACE-complete.

Proof. The theorem can be proved by adapting the reachability proof above. In
other work, not yet published, the same claim is proved by a reduction from
QBF. ut

4.3 Synthesis and Consistency

The most complex class of problems considered here is that of synthesis. In this
class of problems, we would like to know whether the objects participating in
the LSC specification can actually be implemented consistently. This problem is
also termed “agent design”.

A related problem is that of consistency; i.e., deciding whether the specifi-
cation has no internal contradictions. A formal definition of a consistent system
is given in [13]. Informally, a system is consistent if there exists a non-empty
regular language, L, s.t. (1) all universal charts are satisfied by all traces in L;
(2) every trace in L is extendible if a new message is sent from the environment;
and (3) each existential chart is satisfied by some trace in L. In [13] it is shown
that a system is consistent if and only if it is satisfiable (i.e., can be synthesized).

As in previous sections, two versions of the synthesis problem are considered;
a centralized one, in which a single automaton is built, and a distributed one, in
which each object has its own automaton.

Theorem 5 ([1]). Centralized synthesis is EXPTIME-complete.

Proof. Membership follows from the exponential time algorithms proposed in [4]
and [15].

Hardness is proved by encoding an alternating PSPACE Turing machine
as an LSC, similar to the construction in Theorem 3, in which existential and
universal moves are distinguished. ut

An interesting question regarding the centralized synthesis problem deals
with the size of the synthesized automaton. This is also answered in [3], where
it is shown that there exists a family (φn)n>0 of LSC specifications, such that
any implementation of φn requires memory of size 2Ω(n log n). It is worth noting
that this proof uses co-region constructs, which relax the ordering of events. A
co-region succinctly encodes an exponential number of orderings.

Finally, [3] considers the problem of distributed synthesis, in which each ob-
ject has to be synthesized separately. The question of whether such a synthesis
exists is undecidable. This is proved by reducing Post’s correspondence prob-
lem to the problem of deciding whether the specification is not distributively
implementable.



5 Conclusion

The language of LSC has been a subject of much work. We surveyed here some
theoretical results regarding the expressive power of the language and the com-
plexity of some of its main applications.
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