Abstract
The paper presents a new border algorithm for making the covering relation of concepts explicit for iceberg concept lattices. The border algorithm requires no information from the formal context relying only on the formal concept set in order to explicitly state the covering relation between formal concepts. Empirical testing is performed to compare the border algorithm with a traditional algorithm based on the Covering Edges algorithm from Concept Data Analysis [4].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
libferris visited April 2007, http://witme.sf.net/libferris.web/
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 12–15 1994, pp. 487–499. Morgan Kaufmann, San Francisco (1994)
Blake, C., Merz, C.: UCI Repository of Machine Learning Databases. In: Irvine, CA: University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Carpineto, C., Romano, G.: Concept Data Analysis. Wiley, England (2004)
Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations. Springer–Verlag, Berlin Heidelberg (1999)
Goethals, B., Zaki, M.J.: Advances in frequent itemset mining implementations: Report on fimi’03. In: Goethals, B., Zaki, M.J. (eds.) Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations. CEUR Workshop Proceedings, vol. 90 (2003)
Grahne, O., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In: Goethals, B., Zaki, M.J. (eds.) Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Ceur (2003)
Han, J.: Data mining: concepts and techniques. Morgan Kaufmann Publishers, San Francisco (2001)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W., Naughton, J., Bernstein, P.A. (eds.) 2000 ACM SIGMOD Intl. Conference on Management of Data, pp. 1–12. ACM Press, New York (2000)
Martin, B., Eklund, P.W.: Spatial Indexing for Scalability in FCA. In: Missaoui, R., Schmid, J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874, pp. 205–220. Springer, Heidelberg (2006)
Martin, B., Eklund, P.W.: Custom asymmetric page split generalized index search trees and formal concept analysis. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, Springer, Heidelberg (2007)
Mueller, A.: Fast sequential and parallel algorithms for association rule mining: A comparison. Technical Report CS-TR-3515, Departure of Computer Science, University of Maryland, College Park, MD (1995)
Pei, J.: Pattern-growth methods for frequent pattern mining, ph.d. thesis, computing science, simon fraser university (2001)
Pietracaprina, A., Zendolin, D.: Mining frequent itemsets using patricia tries. In: Goethals, B., Zaki, M.J. (eds.) Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Ceur (2003)
Agrawal, R., et al.: Fast discovery of association rules. In: Fayyad, U., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)
Stumme, G., et al.: Computing iceberg concept lattices with titanic. J. on Knowledge and Data Engineering (KDE) 42, 189–222 (2002)
Zaki, M.J.: Scalable algorithms for association mining. Knowledge and Data Engineering 12, 372–390 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martin, B., Eklund, P. (2008). From Concepts to Concept Lattice: A Border Algorithm for Making Covers Explicit. In: Medina, R., Obiedkov, S. (eds) Formal Concept Analysis. ICFCA 2008. Lecture Notes in Computer Science(), vol 4933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78137-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-78137-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78136-3
Online ISBN: 978-3-540-78137-0
eBook Packages: Computer ScienceComputer Science (R0)