Skip to main content

Versatile Search of Scanned Arabic Handwriting

  • Conference paper
Arabic and Chinese Handwriting Recognition (SACH 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4768))

Included in the following conference series:

  • 914 Accesses

Abstract

Searching handwritten documents is a relatively unexplored frontier for documents in any language. Traditional approaches use either image-based or text-based techniques. This paper describes a framework for versatile search where the query can be either text or image, and the retrieval method fuses text and image retrieval methods. A UNICODE and an image query are maintained throughout the search, with the results being combined by a neural network. Preliminary results show positive results that can be further improved by refining the component pieces of the framework (text transcription and image search).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)

    Google Scholar 

  2. Taghva, K., Borsack, J., Condit, A.: Results of applying probabilistic IR to OCR text. In: Research and Development in Information Retrieval, pp. 202–211 (1994)

    Google Scholar 

  3. Russell, G., Perrone, M., Chee, Y.M., Ziq, A.: Handwritten Document Retrieval. In: Proc. Eighth International Workshop on Frontiers in Handwriting Recognition, Niagara-on-the-lake, Ontario, pp. 233–238 (2002)

    Google Scholar 

  4. Srihari, S.N., Huang, C., Srinivasan, H.: A search engine for handwritten documents. In: Document Recognition and Retrieval XII: Proceedings SPIE, San Jose, CA, pp. 66–75 (2005)

    Google Scholar 

  5. Srihari, S.N., Zhang, B., Tomai, C., Lee, S., Shi, Z., Shin, Y.C.: A search engine for handwritten documents. In: Proc. Symposium on Document Image Understanding Technology (SDIUT 2005), Greenbelt, MD, pp. 67–75 (2003)

    Google Scholar 

  6. Srihari, S.N., Shi, Z.: Forensic handwritten document retrieval system. In: Proc. Document Image Analysis for Libraries (DIAL), Palo Alto, CA, pp. 188–194. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  7. Srihari, S.N., Srinivasan, H., Babu, P., Bhole, C.: Handwritten Arabic word spotting using the CEDARABIC document analysis system. In: Proc. Symposium on Document Image Understanding Technology (SDIUT 2005), College Park, MD, pp. 123–132 (2005)

    Google Scholar 

  8. Srihari, S.N., Srinivasan, H., Babu, P., Bhole, C.: Spotting words in handwritten Arabic documents. In: Document Recognition and Retrieval XIII: Proceedings SPIE, San Jose, CA, pp. 606702-1– 606702-12 (2006)

    Google Scholar 

  9. Kim, G., Govindaraju, V.: A lexicon driven approach to handwritten word recognition for real-time applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 366–379 (1997)

    Article  Google Scholar 

  10. Kim, G., Govindaraju, V., Srihari, S.N.: A segmentation and recognition strategy for handwritten phrases. In: International Conference on Pattern Recognition. ICPR-13, pp. 510–514 (1996)

    Google Scholar 

  11. Huang, C., Srihari, S.N.: Mapping transcripts to handwritten text. In: Proc. Tenth International Workshop on Frontiers in Handwriting Recognition (IWFHR), La Boule, France, IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  12. Zhang, B., Srihari, S.N.: Binary vector dissimilarity measures for handwriting identification. In: Proceedings of the SPIE, Document Recognition and Retrieval, pp. 155–166 (2003)

    Google Scholar 

  13. Srihari, S.N., Tomai, C.I., Zhang, B., Lee, S.: Individuality of numerals. In: Proc. Seventh International Conference on Document Analysis and Recognition (ICDAR), Edinburgh, UK, p. 1096. IEEE Computer Society, Los Alamitos (2003)

    Chapter  Google Scholar 

  14. Kim, G.: Recognition of offline handwritten words and extension to phrase recognition. Doctoral Dissertation, State University of New York at Buffalo (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Doermann Stefan Jaeger

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srihari, S.N., Ball, G.R., Srinivasan, H. (2008). Versatile Search of Scanned Arabic Handwriting. In: Doermann, D., Jaeger, S. (eds) Arabic and Chinese Handwriting Recognition. SACH 2006. Lecture Notes in Computer Science, vol 4768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78199-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78199-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78198-1

  • Online ISBN: 978-3-540-78199-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics