Skip to main content

Computational Intelligence: An Introduction

  • Chapter
Computational Intelligence: A Compendium

Part of the book series: Studies in Computational Intelligence ((SCI,volume 115))

The Artificial Intelligence field continues to be plagued by what can only be described as ‘bold promises for the future syndrome’, often perpetrated by researchers who should know better.1 While impartial assessment can point to concrete contributions over the past 50 years (such as automated theorem proving, games strategies, the LISP and Prolog high-level computer languages, Automatic Speech Recognition, Natural Language Processing, mobile robot path planning, unmanned vehicles, humanoid robots, data mining, and more), the more cynical argue that AI has witnessed more than its fair share of ‘unmitigated disasters’ during this time – see, for example [3, 58, 107, 125, 186]. The general public becomes rapidly jaded with such ‘bold predictions’ that fail to live up to their original hype, and which ultimately render the zealots’ promises as counter-productive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe S (2005) Support Vector Machines for Pattern Classification. Springer-Verlag, New York, NY.

    Google Scholar 

  2. Adelman L (1994) Computing with DNA. Scientific American, 2792: 54-61.

    Google Scholar 

  3. Allen J (1998) AI growing up: the changes and opportunities. AI Magazine, Winter: 32-45.

    Google Scholar 

  4. Amos M (2005) Theoretical and Experimental DNA Computation. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  5. Anderson JA, Rosenfeld E (eds.) (1988) Neurocomputing: Foundations of Research. MIT Press, Cambridge, MA.

    Google Scholar 

  6. AOS (2002) JACK intelligent agents. Agent Oriented Software P/L (available online at http://www.agent-software.com.au - last accessed November 2006).

  7. Arotaritei D, Negoita GM (2002) Optimisation of recurrent NN by GA with variable length genotype. In: McKay B, Slaney J (eds.) AI2002: Advances in Artificial Intelligence. Springer-Verlag, Berlin.

    Google Scholar 

  8. Bagley JD (1967) The behavior of adaptive systems which employ genetic and correlation algorithms. PhD Thesis, University of Michigan, Ann Arbor, MI.

    Google Scholar 

  9. Bai Q, Zhang M (2006) Coordinating agent interactions under open environments. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence. Idea Group, Hershey, PA: 52-67.

    Google Scholar 

  10. Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic Programming, An Introduction: On the Automatic Evolution of Computer Programs and its Application. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  11. Battiti R, Colla AM (1994) democracy in neural networks: voting schemes for classification. Neural Networks, 7: 691-707.

    Google Scholar 

  12. Beale R, Pryke A (2006) Knowledge through evolution. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence. Idea Group, Hershey, PA: 234-250.

    Google Scholar 

  13. Benitez JM, Blanco A, Delgado M, Requena I (1996) Neural methods for obtaining fuzzy rules. Mathware Soft Computing, 3: 371-382

    Google Scholar 

  14. Bergenti F, Giezes M-P, Zambonelli F (2004) Methodologies and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  15. Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, NY.

    MATH  Google Scholar 

  16. Bezdek JC (1994) What is computational intelligence? In: Zurada JM, Marks II RJ, Robinson CJ (eds.) Computational Intelligence Imitating Life. IEEE Press, Piscataway, NJ: 1-12.

    Google Scholar 

  17. Bezdek JC (1998) Computational intelligence defined - by everyone! In: Kaynak O, Zadeh LA, Türksen B, Rudas IJ (eds.) Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications. Springer-Verlag, Berlin: 10-37.

    Google Scholar 

  18. Bezdek JC, Hathaway RJ (1994) Optimization of fuzzy clustering criteria using genetic algorithms. In: Proc. World Congress Computational Intelligence (WCCI’94), June, Orlando, FL. IEEE Computer Society Press, Los Alamitos, CA: 589-594.

    Google Scholar 

  19. Bigus JP, Bigus J, Bigus J (2001) Constructing Intelligent Agents Using Java (2nd ed). Wiley, New York, NY.

    Google Scholar 

  20. Black M (1937) Vagueness: an exercise in logical analysis. Philosophy of Science, 4: 427-455.

    Google Scholar 

  21. Bonabeau E, Dorigo M, Theaulaz G (1999) Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, UK.

    MATH  Google Scholar 

  22. Botros NM, Abdul-Aziz M (1994) Hardware implementation of an ANN using field programmable gate arrays (FPGAs). IEEE Trans. Industrial Electronics, 416: 665-667.

    Google Scholar 

  23. Boukerche A, Jucá KRL, Sobral JB, Notare MSMA (2004) An artificial immune based intrusion detection model for computer and telecommunication systems. Parallel Computing, 305-6: 629-646.

    Google Scholar 

  24. Breiman L, Friedman J, Olshe R, Stone CJ (1984) Classification and Regression Trees. Chapman and Hall, New York, NY.

    MATH  Google Scholar 

  25. Breiman L (1996) Bagging predictors. Machine Learning, 262: 123-140.

    Google Scholar 

  26. Breiman L (1999) Combining predictors. In: Sharkey AJC (ed.) Combin-ing Artificial Neural Networks: Ensemble and Modular Multi-Net Systems. Springer-Verlag, Berlin: 31-50.

    Google Scholar 

  27. Brewka G (1997) Principles of Knowledge Representation. CSLI Publications, Stanford, CA.

    Google Scholar 

  28. Brill R, Guiterrez-Osuna, Quek F(2003) Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern recognition, 366: 1291-1302.

    Google Scholar 

  29. Brooks RA (1986) A robot layered control system for a mobile robot. IEEE J. Robotics and Automation, RA-2: 14-23.

    MathSciNet  Google Scholar 

  30. Brooks RA (1991) Intelligence without representation. Artificial Intelligence, 471-3: 139-159.

    Google Scholar 

  31. Brooks RA (1991) Intelligence without reason. In: Proc. 12th Intl. Joint. Conf. Artificial Intelligence - IJCAI. August, Sydney, Australia: 569-595.

    Google Scholar 

  32. Brooks RA (1991) How to build complete creatures rather than isolated cogni-tive simulators. In: van Lehn K (ed.) Architectures for Intelligence. Lawrence Erlbaum Associates, Hillsdale, NJ: 225-239.

    Google Scholar 

  33. Brooks RA, Kurzweil R, Gelernter D (2006) Gelernter, Kurzweil debate machine consciousness. (available online at http://www.kurzweilai.net/meme/frame.html?m=4 - last accessed April 2007).

  34. Brooks RA (2007) The relaitonship between matter and life. Nature, 409(6818):409-410.

    Google Scholar 

  35. Brooks RR, Ivengar SS(1997) Multi-Sensor Fusion: Fundamentals and Applications with Software. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  36. Brown M, Harris CJ (1994) Neuro-fuzzy Adaptive Modeling and Control. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  37. Bryson AE, Ho Y-C (1969) Applied Optimal Control. Blaisdell, New York, NY.

    Google Scholar 

  38. Byrski A, Kisiel-Dorohinicki M (2005) Immune-based optimization of predict-ing neural networks. In: Sunderam VS et al. (eds.) Proc. Workshop Intelligent Agents in Computing Systems - ICCS 2005, 22-25 May, Atlanta, GA, Lecture Notes in Computer Science 3516. Springer-Verlag, Berlin.

    Google Scholar 

  39. Calado JMF, Ss da Costa JMG (1999) An expert system coupled with a hierarchical structure of fuzzy nerual networks for fault diagnosis. J. Applied Mathematics and Computer Science, 39: 667-688.

    Google Scholar 

  40. Carpenter GA, Grossberg SA (1987) A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Understanding, 37: 54-115.

    Google Scholar 

  41. Carpenter GA, Grossberg SA (1987) ART2: self-organization of stable category recognition codes for analog input patterns. Applied Optics, 2623: 4919-4930.

    Google Scholar 

  42. Castellano G, Castiello C, Fanelli AM, Mencar C (2003) Discovery prediction rules by a neuro-fuzzy modeling framework. In: Palade V, Howlett JR, Jain LC (eds.) Knowledge-Based Intelligent Information and Engineering Systems. Springer-Verlag, Berlin, 2: 1243-1248.

    Google Scholar 

  43. Cedeño W, Agrafiotis DK (2003) Combining particle swarms and k-nearest neighbors for the development of qualitative structure-activity relationships. Bicom Magazine: 43-53.

    Google Scholar 

  44. Chalmers DJ (1997) Moving forward on the problem of consciousness. Consciousness Studies, 41: 3-46.

    Google Scholar 

  45. Chalmers DJ (1998) On the Search for the Neural Correlate of Concsiousness. MIT Press, Cambridge, MA.

    Google Scholar 

  46. Chen K, Wang L, Chi H (1997) Methods of combining multiple classifiers with different features and their application to text-independent speaker identification. Intl. J. Pattern Recognition and Artificial Intelligence, 113: 417-445.

    Google Scholar 

  47. Chen Z (2000) Computational Intelligence for Decision Support. CRC Press, Boca Raton, FL.

    Google Scholar 

  48. Chimmanee S, Wipusitwarakun K, Runggeratigul S (2003) Adaptive per-application load balancing with neuron-fuzzy to support quality of service over IP in the internet. In: Palade V, Howlett JR, Jain LC (eds.) Knowledge-Based Intelligent Information and Engineering Systems. Springer-Verlag, Berlin, I: 533-541.

    Google Scholar 

  49. Cho S-B, Kim JH (1995) Pattern recognition with neural networks combined by genetic algorithm. Fuzzy Sets and Systems, 103: 339-347.

    Google Scholar 

  50. Cho S-B, Kim JH (1995) Combining multiple neural networks by fuzzy integral and robust classification. IEEE Trans. Systems, Man, and Cybernetics, 25: 380-384.

    Google Scholar 

  51. Cho S-B, Kim JH (1995) Multiple network fusion using fuzzy logic. IEEE Trans. Neural Networks, 6: 497-501.

    Google Scholar 

  52. Cho S-B (1999) Pattern recognition with neural networks combined by genetic algorithm. Fuzzy Sets and Systems, 103: 339-347.

    Google Scholar 

  53. Ciancarini P, Wooldridge MJ (eds.) (2000) Agent-oriented software engineer-ing. In: Proc. 1st Intl. AOSE Workshop, June, Limerick, Ireland, Lecture Notes in Computer Science 1957, Springer-Verlag, Berlin.

    Google Scholar 

  54. Cohon JL(2004) Multiobjective Programming and Planning. Dover Publications, Mineola, NY.

    Google Scholar 

  55. Conrad M (1989) The brain-machine disanalogy. Biosystems, 223: 197-213.

    Google Scholar 

  56. Cordon O, Herrera F, Lozano P (1997) On the combination of fuzy logic and evolutionary computation: a short review and bibliography. In: Pedrycz W (ed.) Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Boston, MA: 41-42.

    Google Scholar 

  57. Cox E (1994) The Fuzzy System Handbook. AP Professional Books, Boston, MA.

    Google Scholar 

  58. Crox T (2007) Stop cahsing the AI illusion. Communications ACM, 504: 7-8.

    Google Scholar 

  59. Cybenko G (1989) Approximation by superposition of a sigmoidal function. Math Control, Signals, Systems, 2: 303-314.

    MathSciNet  MATH  Google Scholar 

  60. Dasarthy BV (1997) Sensor fusion potential exploitation- innovative architectures and illustrative applications. Proc. IEEE, 85: 24-38.

    Google Scholar 

  61. Dasgupta D, Attoh-Okine N (1997) Immunity-based systems: a survey. In: Proc. IEEE Intl. Conf. Systems, Man and Cybernetics. Orlando, FL. IEEE Computer Society Press, Los Almotis, CA: 326-331.

    Google Scholar 

  62. Davis L (ed.) (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  63. Deasy H (2007) Consciousness and computers. IEEE Computer, 4010: 7.

    Google Scholar 

  64. DeJong KA (1975) An analysis of the behavior of a class of genetic adaptive systems. PhD Thesis, University of Michigan, Ann Arbor, MI.

    Google Scholar 

  65. DeJong KA (2006) Evolutionary Computation: A Unified Approach. Bradford/MIT Press, Cambridge, MA.

    Google Scholar 

  66. Demirekler M, Altincay H (2002) Pluraity voting-based multiple classifier systems: statistically independent with respect to dependent classifier sets. Pattern Recognition, 35: 2363-2379.

    Google Scholar 

  67. Dennett D (1991) Consciousness Explained. Little, Brown and Co., Lebanon, IN.

    Google Scholar 

  68. Deschamps JP, Bioul GJA, Sutter GO (2006) Synthesis of Arithmetic Circuits: FPGAs, ASIC and Enbedded Systems. Wiley, New York, NY.

    Google Scholar 

  69. Dietterich T (2000) An experimental comparison of three methods for con-structing ensembles of decision trees: bagging, boosting, and randimization. Machine Learning, 402: 139-157.

    Google Scholar 

  70. Dongarra J, Foster I, Fox GC, Gropp W, Kennedy K, Torczon L White A (2003) The Sourcebook of Parallel Computing. Morgan Kauffman, San Francisco, CA.

    Google Scholar 

  71. Dorigo M, Stützle T(2004) Ant Colony Optimization. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  72. Dowling C (2000) Intelligent agents: some ethical issues and dilemmas. In: Proc. Australian Institute Conf. Computer Ethics - AICE2000, Canberra, 11-12 November, Australian Computer Society, Darlinghurst, NSW: 28-32.

    Google Scholar 

  73. Dreyfus H, Dreyfus S (1986) Why expert systems do not exhibit expertise. IEEE Expert, 12: 86-90.

    Google Scholar 

  74. Drucker H, Schapire RE, Simard P (1992) Improving performance in neu-ral networks using a boosting algorithm. In: Hanson SJ et al. Advances in Neural Information Processing Systems 5, 30 November-3 December, Morgan Kauffman, San Mateo, CA: 42-49.

    Google Scholar 

  75. Drucker H, Cortes C, Jackel LD, LeCun Y, Vapnik V (1994) Boosting and other ensemble methods. Neural Computation, 6: 1289-1301.

    MATH  Google Scholar 

  76. Drucker H (1999) Boosting using neural networks. In: Sharkey AJC (ed.) Com-bining Artificial Neural Networks: Ensemble and Modular Multi-Net Systems. Springer-Verlag, Berlin.

    Google Scholar 

  77. Dubois D, Prade H (1980) Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, NY.

    MATH  Google Scholar 

  78. Duch W (2007) What is computational intelligence and where is it going? In: Duch W, Mandziuk J (eds.) Challenges for Computational Intelligence. Springer-Verlag, Berlin.

    Google Scholar 

  79. Durkin J (1994) Expert Systems: Design and Development. Macmillan, New York, NY.

    MATH  Google Scholar 

  80. Eberhart R, Simpson P, Dobbins R (1996) Computational Intelligence PC Tools. Academic Press, Boston, MA.

    Google Scholar 

  81. Enbutsu I, Baba K, Hara N (1991) Fuzzy rule extraction from a multilayered network. In: Proc. Intl. Joint Conf. Neural Networks (IJCNN’91), 8-12 July, Seattle, WA. IEEE Computer Society Press, Los Alamitos, CA: 461-465.

    Google Scholar 

  82. Engelbrecht AP (2003) Computational Intelligence: An Introduction. Wiley, New York, NY.

    Google Scholar 

  83. Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence. Wiley, New York, NY.

    Google Scholar 

  84. Fahlman SE, Lebiere C (1990) The cascade learning learning architecture. In: Touretzky DS (ed.) Advances in Neural Information Processing Systems. Morgan Kaufmann, San Mateo, CA: 524-532.

    Google Scholar 

  85. Falconer K (2003) Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York, NY.

    MATH  Google Scholar 

  86. Fagarasan F, Negoita GM (1995) A genetic-based method for learning the parameter of a fuzzy inference system. In: Kasabov N, Coghill G (eds.) Artificial Neural Networks and Expert Systems. IEEE Computer Society Press, Los Alamitos, CA: 223-226.

    Google Scholar 

  87. Farmer JD, Packard NH, Perelson AS (1986) The immune systems: adaptation and machine learning. Physica A, 22: 187-204.

    MathSciNet  Google Scholar 

  88. Fensel D, Hermalen F, Horrocks I, McGuinness D, Patel-Schneider P (2001) OIL: an ontology infrastructure for the semantic web. IEEE Intelligent Systems, 162: 38-45.

    Google Scholar 

  89. Ferber J (1999) Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley, Reading, MA.

    Google Scholar 

  90. Finin T, Labrou Y, Mayfield J (1997) KQML as an agent communication language. In: Bradshaw JM (ed.) Software Agents MIT Press, Cambridge, MA.

    Google Scholar 

  91. Fisher R, Fulcher J (1998) Inproving the inversion of ionograms by com-bining neural network and data fusion techniques. Neural Computing and Applications, 7: 3-16.

    Google Scholar 

  92. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence through Simulated Evolution. Wiley, New York, NY

    MATH  Google Scholar 

  93. Fogel D (1995) Review of CI: Imitating Life, In: IEEE Trans. Neural Networks, 6: 1562-1565.

    Google Scholar 

  94. Fogel LJ (1995) Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ.

    Google Scholar 

  95. Ford K, Hayes P (1998) On computational wings: rethinking the goals of AI. Scientific American, 9/4: 78-84.

    Google Scholar 

  96. Fraser AS (1957) Simulation of genetic systems by automatic digital computers. Australian J. Biological Science, 10: 484-499.

    Google Scholar 

  97. Fraser AS (1960) Simulation of genetic systems by automatic digital computers. In: Kempthorne O (ed.) Biometrical Genetics. Macmillan, New York, NY: 70-83.

    Google Scholar 

  98. Freitas AA (2002) Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  99. Freund Y, Scahapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences, 551: 119-139.

    MATH  Google Scholar 

  100. Friedberg RM (1958) A learning machine: part I. IBM J. Research and Development, 2: 2-13.

    MathSciNet  Google Scholar 

  101. Friedberg RM, Dunham B, North JH (1959) A learning machine: Part II. IBM J. Research and Development, 3: 282-287.

    Article  MathSciNet  Google Scholar 

  102. Fulcher J (2008) User interfaces. In: Pagani M (ed.) Encyclopedia of Multimedia Technology (2nd ed). Information Sciences Reference, Hershey, PA (in press).

    Google Scholar 

  103. Fuller R (1999) Introduction to Neuro-Fuzzy Systems. Springer-Verlag, Berlin.

    Google Scholar 

  104. Furuhashi T, Nakaoka K, Uchikawa Y (1994) A new approach to genetic based machine learning and an efficient finding of fuzzy rules: proposal of Nagoya approach In: Proc. IEEE/Nagoya University World Wisepersons Workshop on Advances in Fuzzy Logic, Neural Networks, and Genetic Algorithms, Lecture Notes in Computer Science 1011, Springer-Verlag, Berlin: 173-189.

    Google Scholar 

  105. Gallagher JC, Virraham S, Kramer G (2004) A family of compact genetic algorithms for intrinsic evolvable hardware. IEEE Trans. Evolutionary Computation, 82: 111-126.

    Google Scholar 

  106. Georgeff M, et al. (1999) The belief-desire-intention model of agents. In: Müller JP, Singh MP, Rao AS (eds.) Proc. 5th Intl. Workshop Intelligent Agents V, Agent Theories, Architectures, and Languages (ATAL-98). Lecture Notes in Computer Science 1555. Springer-Verlag, Berlin: 1-10.

    Google Scholar 

  107. Georgeff M, Azarmi N (2003) What has AI done for us? BT Technology J., 214: 15-22.

    Google Scholar 

  108. Giacinto G, Roli F, Didaci L (2003) Fusion of multiple classifier for intrusion detection in computer networks. Pattern Recognition Letters, 24: 1795-1803.

    Google Scholar 

  109. Giarratano JC, Riley G (2005) Expert Systems: Principles and Programming (4th ed). Thomson, Boston, MA.

    Google Scholar 

  110. Girau B (2000) FPNA: interaction between FPGA and neural computation. Intl. J. Neural Systems, 103: 243-259.

    Google Scholar 

  111. Ghosh J (2002) Multiclassifier systems: back to the future. In: Roli F, Kittler J (eds.) Proc. 3rd Intl. Workshop Multiple Classifier Systems (MCS’02), Cagliari, Italy. Lecture Notes in Computer Science 2364, Springer-Verlag, Berlin: 1-15.

    Google Scholar 

  112. Gladwell M (2005) Blink: The Power of Thinking without Thinking. Little, Brown and Co., Lebanon, IN.

    Google Scholar 

  113. Gokhale MB, Graham PS (2005) Reconfigurable Computing: Computation with Field-Programmable Gate Arrays. Springer-Verlag, Berlin.

    Google Scholar 

  114. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading, MA.

    MATH  Google Scholar 

  115. Grama A, Karypis G, Kumar V, Gupta A (2003) An Introduction to Parallel Computing: Design and Analysis of Algorithms (2nd ed). Addison Wesley, Reading, MA.

    Google Scholar 

  116. Greffenstette JJ (1984) A user’s guide to GENESIS. Technical Report CS-84-11, Deptartment of Computer Science, Vanderbilt University, Nashville, TN.

    Google Scholar 

  117. Hall DL, Llinas J (1997) An introduction to multisensor data fusion. Proc. IEEE, 851: 6-23.

    Google Scholar 

  118. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans. Pattern Analysis and Machine Intelligence, 1210: 993-1001.

    Google Scholar 

  119. Hart WE, Krasnogor N, Smith JE (eds.) (2005) Recent Advances in Memetic Algorithms. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  120. Hashem S (1997) Optimal linear combinations of neural networks. Neural Networks, 104: 599-614.

    Google Scholar 

  121. Hassibi B, Stork DG, Wolff GJ (1992) Optimal brain surgeon and general network pruning. In: Proc. IEEE Intl. Joint Conf. Neural Networks I, San Francisco, CA. IEEE Computer Society Press, Piscataway, NJ: 293-299.

    Google Scholar 

  122. Haupt RL, Haupt SE (2004) Practical Genetic Algorithms. Wiley, New York, NY.

    MATH  Google Scholar 

  123. Hawkins J (2007) Learn like a human: why can’t a computer be more like a brain? IEEE Spectrum, 444: 17-22.

    MathSciNet  Google Scholar 

  124. Haykin SY (1999) Neural Networks: a Comprehensive Foundation (2nd ed). Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  125. Hearst M, Hirsh H(2000) AIs greatest trends and controversies. IEEE Intelligent Systems, January/February: 8-17.

    Google Scholar 

  126. Hebb DO (1949) The Organization of Behavior. Wiley, New York, NY

    Google Scholar 

  127. Hendtlass T (2004) An introduction to collective intelligence. In: Fulcher J, Jain LC (eds.) Applied Intelligent Systems: New Directions. Springer-Verlag, Berlin: 133-178.

    Google Scholar 

  128. Herrera F, Lozano M, Verdegay IL (1993) Tuning fuzzy logic controllers by genetic algorithms. Technical Report DECSai-93102, June, Universidad de Granada, Spain.

    Google Scholar 

  129. Higuchi T, et al. (1999) Real-world applications of analog and digital evolvable hardware. IEEE Trans. Evolutionary Computation, 33: 220-235.

    Google Scholar 

  130. Hinchey MG, Sterritt R, Rouff C (2007) Swarms and swarm intelligence. IEEE Computer, 404: 111-113.

    Google Scholar 

  131. Hinton GE, Anderson JA (1981) Parallel Models of Associative Memory. Lawrence Erblaum Associates, Potomac, MD.

    Google Scholar 

  132. Hirai Y(1993) Hardware implementations of neural networks in Japan. Neurocomputing, 5: 3-16.

    Google Scholar 

  133. Hirota K (1995) History of Industrial Applications of Fuzzy Logic in Japan. In: Yen J, Langari R, Zadeh L (eds.) Industrial Applications of Fuzzy Logic and Intelligent Systems. IEEE Press, Piscataway, NJ: Chapter 2.

    Google Scholar 

  134. Ho TK (2002) Multiple classifier combination: lessons and the next steps. In: Kandel A, Bunke H (eds.) Hybrid Methods in Pattern Recognition. World Scientific, Singapore: 171-198.

    Google Scholar 

  135. Holland JH (1962) Outline for a logical theory of adaptive systems. J. ACM, 3: 297-314.

    Google Scholar 

  136. Holland JJ (1992) Adaptation in Natural and Artificial Systems (2nd ed). MIT Press, Cambridge, MA.

    Google Scholar 

  137. Hopfield JJ (1984) Neurons with graded response have collective computational properties like those in two-state neurons. Proc. National Academy Science, 81: 3088-3092.

    Google Scholar 

  138. Hornik K (1991) Approximation capabilities of multi-layer feed-forward networks. Neural Networks, 4: 2151-2157.

    Google Scholar 

  139. Ignizio J (1991) Introduction to Expert Systems. McGraw-Hill, New York, NY.

    Google Scholar 

  140. Inuiguchi M, Hirano S, Tsumoto S (eds.) (2003) Rough Set Theory and Granular Computing. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  141. Ishida Y (2004) Immunity-Based Systems: A Design Perspective. Springer-Verlag, Berlin.

    Google Scholar 

  142. Jackson P (1999) Introduction to Expert Systems (3rd ed). Addison Wesley, Reading, MA.

    Google Scholar 

  143. Jacobs RA (1988) Increased rates of convergence through learning rate adaptation. Neural Networks, 1: 295-307.

    Google Scholar 

  144. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixture of local experts. Neural Computation, 3: 79-87.

    Google Scholar 

  145. Jang J-S R, Sun C-T, Mizutani E (1997) Neuro-Fuzzy and Soft Computing: a Computational Approach to Learning and Machine Intelligence. Prentice Hall, Englewood Cliffs, Upper Saddle River, NJ.

    Google Scholar 

  146. Jennings NR, Faratin P, Norman TJ (2000) On agent-oriented software engineering. Artificial Intelligence, 1172: 277-296.

    MATH  Google Scholar 

  147. Jensen FV (2001) Bayesian Networks and Decision Graphs. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  148. Jin Y (ed.) (2006) Multi-Objective Machine Learning. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  149. Jordan MI, Jacobs RA (1994) Hierarchical mixture of experts and the EM algorithm. Neural Computation, 62: 181-214.

    Google Scholar 

  150. Judd JS (1990) Neural Network Design and the Complexity of Learning. MIT Press, Cambridge, MA.

    Google Scholar 

  151. Karplus W (1998) cited in: Kaynak O, Zadeh LA, Türksen B, Rudas IJ (eds.) Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications. Springer-Verlag, Berlin.

    Google Scholar 

  152. Karr C (1991) Applying genetics to fuzzy logic. AI Expert, 63: 38-43.

    MathSciNet  Google Scholar 

  153. Kasabov N (1996) Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems. Fuzzy Sets and Systems, 82: 135-149.

    MathSciNet  Google Scholar 

  154. Kennedy J, Eberhart RC, Yuhui S, Shi Y (2001) Swarm Intelligence. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  155. Khosla A, Kumar S, Aggarwal KK (2006) Swarm intelligence and the Taguchi method for identification of fuzzy models. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence. Idea Group, Hershey, PA: 273-295.

    Google Scholar 

  156. Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans. Pattern Analysis and Machine Intelligence, 203: 226-239.

    Google Scholar 

  157. Klein LA (2004) Sensor and Data Fusion: A Tool for Information and Decision Making. Intl. Society for Optical Engineering (SPIE), Bellingham, WA.

    Google Scholar 

  158. Knowles J, Corne D (2004) Memetic algorithms for multiobjective optimization: issues, methods and prospects. In: Krasnogor N, Smith JE, Hart WE (eds.) Recent Advances in Memetic Algorithms. Springer-Verlag, Berlin.

    Google Scholar 

  159. Kohonen T (1986) Learning vector quantization for pattern recognition. Technical Report TKK-F-A601, Helsinski University of Technology, Finland.

    Google Scholar 

  160. Kohonen T (2001) Self-Organization and Associative Memory (3rd ed). Springer-Verlag, Berlin.

    Google Scholar 

  161. Korb KB (2004) Bayesian Artificial Intelligence. CRC Press, Boca Raton, FL.

    MATH  Google Scholar 

  162. Kosko B (1992) Neural Networks and Fuzzy Systems: a Dynamical Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  163. Koza J (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  164. Koza J (1995) Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA.

    Google Scholar 

  165. Koza J (1999) Genetic Programming III: Darwinian Inventions and Problem Solving. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  166. Kuncheva LI (2003) ”Fuzzy” vs ”non-fuzzy” in combining classifiers designed by boosting. IEEE Trans. Fuzzy Systems, 11: 729-741.

    Google Scholar 

  167. Kuncheva LI, Jain LC (2000) Designing classifier fusion systems by genetic algorithms. IEEE Trans. Evolutionary Computation, 44: 327-336.

    Google Scholar 

  168. Kuncheva LI, Whitaker CJ, Shipp CA, Duin RPW (2003) Limits on the majority vote accuracy in classifier fusion. Pattern Analysis and Applications, 6: 22-31.

    MathSciNet  MATH  Google Scholar 

  169. Kuncheva LI (2004) Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York, NY.

    MATH  Google Scholar 

  170. Kung SY, Mak MW, Lin SH (2004) Biometric Authentication: A Machine Learning Approach. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  171. Kurzweil R (1999) The Age of Spiritual Machines: When Computers Exceed Human Intelligence. Penguin, New York, NY.

    Google Scholar 

  172. Lam L (2000) Classifier combinations: implementations and theoretical issues. In: Kittler J, Roli F (eds.) Multiple Classifier Systems. Lecture Notes in Computer Science 1857, Springer-Verlag, Berlin: 78-86.

    Google Scholar 

  173. Lam L, Suen CY (1995) Optimal combination of pattern classifiers. Pattern Recognition Letters, 16: 945-954.

    Google Scholar 

  174. Lam L, Suen CY (1997) Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans. Systems, Man, and Cybernetics, 275: 553-568.

    Google Scholar 

  175. Langdon WB (1998) Data Structures and Genetic Programming: GP + Data Structures = Automatic Programming! Kluwer Academic Press, Boston, MA.

    Google Scholar 

  176. Langton CG (1984) Self-reproduction in cellular automata. Physica D, 10: 1-2.

    MathSciNet  Google Scholar 

  177. Lanier J (1995) Agents of Alienation. Interactions, 23: 67-72.

    Google Scholar 

  178. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Advances in NIPS 2, Morgan Kauffman, San Mateo, CA: 598-605.

    Google Scholar 

  179. Lee CS, Jian CC, Hsieh TC (2005) Ontology-based genetic fuzzy agent. In: Proc. IEEE Intl. Fuzzy Systems Conf., Reno, NV, 22-25 May: 331-335.

    Google Scholar 

  180. Lee MA, Takagi H (1993) Integrating design stages of fuzzy systems using genetic algorithms. In: Proc. 2nd IEEE Intl. Conf. Fuzzy Systems (FUZZIEEE’93), 28 March-1 April, San Francisco, CA. IEEE Computer Society Press, Los Alamitos, CA. 1: 612-617.

    Google Scholar 

  181. Lee MA, Esbensen H (1997) Fuzzy/multiobjective genetic systems for intelligent design tools and components. In: Pedrycz W (ed.) Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Boston, MA: 57-81.

    Google Scholar 

  182. Leshno M, Lin V, Pinkus A, Schoken S (1993) Multi-layer feed-forward new-torks with a non-polynomial activation function can approximtae any function. Neural Networks, 6: 861-867.

    Google Scholar 

  183. Lesser V (1995) Multiagent systems: an emerging subdiscipline of AI. ACM Computing Surveys, 273: 340-342.

    Google Scholar 

  184. Leung SC, Fulcher J (1997) Classification of user expertise level by neural networks. Intl. J. Neural Systems, 82: 155-171.

    Google Scholar 

  185. Levy S (1997) Artificial Life: A Report From the Frontier Where Computers Meet Biology. Vintage Books, New York, NY.

    Google Scholar 

  186. Lighthill J (1972) Artificial intelligence: a general survey. Scientific Research Council of Britain. March, SRC: 72-27.

    Google Scholar 

  187. Lin C-T, Lee CSG (1991) Neural network based fuzzy logic control and decision system. IEEE Trans. Computers, 4012: 1320-1336.

    MathSciNet  Google Scholar 

  188. Lin X, Yacoub S, Burns J, Simske S (2003) Performance analysis of pattern classifier combination by plurality voting. Pattern Recognition Letters, 2412: 1795-1969.

    Google Scholar 

  189. Lin YT, Cercone N (1997) Rough Sets and Data Mining: Analysis of Imprecise Data. Kluwer Academic Publishers, New York, NY.

    MATH  Google Scholar 

  190. Lin YT (1999) Granular computing: fuzzy logic and rough sets. In: Zadeh LA, Kacprzyk J (eds.) Computing with Words in Information/Intelligent Systems. Springer-Verlag, Berlin.

    Google Scholar 

  191. Liu J, Tsui KC (2006) Toward Nature-inspired computing. Communications ACM, 4910: 59-64.

    Google Scholar 

  192. Lohn ID, Reggia JA (1997) Automatic discovery of self-replicating structures in cellular automata. IEEE Trans. Evolutionary Computation, 13: 165-178.

    Google Scholar 

  193. Lohn JD, Hornby GS (2006) Evolvable hardware: using evolutionary com-putation to design and optimize hardware systems. IEEE Computational Intelligence Magazine, 11: 19-27.

    Google Scholar 

  194. Lucas P, van der Gaag L (1991) Principles of Expert Systems. Addison Wesley, Reading, MA.

    Google Scholar 

  195. Lukasiewicz J(1963) Elements of Mathematical Logic. Macmillan, New York, NY.

    MATH  Google Scholar 

  196. Maass W, Bishop CM (eds.) (1999) Pulsed Neural Networks. Bradford/MIT Press, Cambridge, MA.

    Google Scholar 

  197. Mahmoud Q, Yu L (2006) Making software agents user-friendly. IEEE Computer, 397: 94-96.

    Google Scholar 

  198. Mallat S(1999) A Wavelet Tour of Signal Processing. Academic Press, Boston, MA.

    MATH  Google Scholar 

  199. Mamdani E, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Intl. J. Man-Machine Studies, 71: 1-13.

    MATH  Google Scholar 

  200. Mandelbrot BB (1985) The Fractal Geometry of Nature: Updated and Augmented. WH Freeman, New York, NY.

    Google Scholar 

  201. Mange D, Tomassin M (1998) Bio-Inspired Computing Machines. Presses Polytechniques et Universitaries Romandes, Laussanne, Switzerland.

    Google Scholar 

  202. McCarthy J (2005) The future of AI: a manifesto. AI Magazine, 26: 39-40.

    Google Scholar 

  203. McCullagh J, Choi B, Bluff K (1997) Genetic evolution of a neural network’s input vector for meteorological estimation. In: Kasabov N, Kozma R, Ko K, Coghill G, Gedeon T (eds.) Progress in Connectionist-Based Information Systems. Springer-Verlag, Berlin: 1046-1049.

    Google Scholar 

  204. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin Mathematical Physics, 5: 115-117.

    MathSciNet  MATH  Google Scholar 

  205. McNeill D, Thro E (1994) Fuzzy Logic: A Practical Approach. Academic Press, Boston, MA.

    MATH  Google Scholar 

  206. Mead C (1989) Analog VLSI and Neural Systems. Addison Wesley, Reading, MA.

    MATH  Google Scholar 

  207. Michalewicz Z, Fogel DB (2000) How to Solve It: Modern Hueristics. Springer-Verlag, Berlin.

    Google Scholar 

  208. Miller DJ, Yan L (1999) Critic-driven ensemble classification. IEEE Trans. Signal Processing, 4710: 2833-2844.

    Google Scholar 

  209. Minsky M, Papert S (1969) Perceptrons (2nd ed). MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  210. Nardi BA, Miller JR, Wright DJ (1998) Collaborative, Programmable Intelligent Agents. Communications ACM, 413: 96-104.

    Google Scholar 

  211. Naur P (2007) Computing versus human thinking. Communicaitons ACM, 501: 85-93.

    Google Scholar 

  212. Neagu C-D (2000) Toxicity prediction using assemblies of hybrid fuzzy neural models. In: Proc. 6th Intl. Conf. Knowledge-Based Intelligent and Engineering Systems (KES2002), 16-18 September, Milan, Italy. IOS Press, Amsterdam, The Netherlands: 1093-1098.

    Google Scholar 

  213. Neagu C-D, Gini G (2003) Neuro-fuzzy knowledge integration applied in toxicity prediciton. In: Jain R, Abraham A, Faucher C, ven der Zwaag BJ (eds.) Innovations in Knowledge Engineering. Advanced Knowledge International, Magill, South Australia: 311-342.

    Google Scholar 

  214. Neagu C-D, Palade V (1999) Fuzzy computing in a multi-purpose neural network implementation. In: Reusch B (ed.) Computational Intelligence: Theory and Applications. Lecture Notes in Computer Science 1625, Springer-Verlag, Berlin: 697-700.

    Google Scholar 

  215. Neagu C-D, Palade V (2003) A neuro-fuzzy approach for functional genomics data interpretation and analysis. J. Neural Computing and Applications. 123-4: 153-159.

    Google Scholar 

  216. Neapolitan RE (2003) Learning Bayesian Networks. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  217. Nedjah N, Alba E, Mourelle LdM (2006) Parallel Evolutionary Computations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  218. Negnevitsky M (2005) Artificial Intelligence: A Guide to Intelligent Systems (2nd ed). Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  219. Negoita MG, Neagu D, Palade V (2005) Computational Intelligence: Engineering of Hybrid Systems. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  220. Negoita M, Agapie A, Fagarasan F (1994) The fusion of genetic algorithms and fuzzy logic: Application in expert systems and intelligent control. In: Proc. IEEE/Nagoya University WWW Conf. Fuzzy Logic and Neural Networks/Genetic Algorithms, August, Nagoya, Japan. IEEE Computer Scoiety Press, Alamitos, CA: 130-133.

    Google Scholar 

  221. Negoita M, Mihaila D (1995) Intelligent techniques based on genetic evolution with applications to neural networks weights optimization. In: Proc. 14th Intl. Congress Cybernetics, 21-25 August, Namur, Belgium. Intl. Association for Cybernetics, Namur, Belgium.

    Google Scholar 

  222. Newell A, Simon HA (1976) Computer Science as empirical enquiry: symbols and search. Communications ACM, 193: 113-126.

    MathSciNet  Google Scholar 

  223. Newell A (1990) Unified Theories of Cognition. Harvard University Press, Cambridge, MA.

    Google Scholar 

  224. Nowlan SJ, Hinto GE (1991) Evaluation of adaptive mixtures of competing experts. In: Lippmann RP, Moody JE, Touretzky DS (eds.) Advances in Neu-ral Information Processing Systems 3. Morgan Kauffman, San Mateo, CA: 774-780.

    Google Scholar 

  225. Oeda S, Ichimura T, Yamashita T, Yoshida K (2003) A proposal of immune multi-agent neural networks and its applicaiton to medical diagnostic system for hepatobiliary disorders. In: Palade V, Howlett JR, Jain LC (eds.) Knowledge-Based Intelligent Engineering Information Systems. Sprigner-Verlag, New York, NY, II: 526-532.

    Google Scholar 

  226. Omondi AR, Rajapakse JC (eds.) (2006) FPGA Implementations of Neural Networks. Springer-Verlag, Dordrecht, The Netherlands.

    Google Scholar 

  227. Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J. AI Research, 11: 169-198.

    MATH  Google Scholar 

  228. Ott E (2002) Chaos in Dynamical Systems. Cambridge University Press, UK.

    MATH  Google Scholar 

  229. Padgham L, Winikoff M (2004) Developing Intelligent Agent Systems: A Practical Guide. Wiley, New York, NY.

    Google Scholar 

  230. Pagliosa A, de Sá CC, Sasse FD (2005) Obtaining membership functions from a neuron fuzzy system extended by Kohonen network. In: Nakamatsu K, Abe JM (eds.) Advances in Logic Based Inteligent Systems (Selected Papers of LAPTEC’2005). IOS Press, Amsterdam, The Netherlands: 42-49.

    Google Scholar 

  231. Pal SK, Shiu S (2004) Foundations of Soft Computer-Based Reasoning. Wiley, Hoboken, NJ.

    Google Scholar 

  232. Palade V, Negoita M, Ariton V (1999) Genetic algorithms optimization of knowledge extraction from nerual networks. In: Proc. 6th Intl. Conf. Neural Information Processing (ICONIP’99), November, Perth, Australia. IEEE Computer Society Press, Los Almatios, CA: 752-758.

    Google Scholar 

  233. Palade V, Patton RJ, Uppal FJ, Quevedo J, Daley S (2002) Fault diagnosis of an industrial gas turbine using neurao-fuzzy methods. In: Proc. 15th Intl. IFAC World Congress, 21-26 July, Barcelona, Spain. Federation for Automatic Control: 2477-2482.

    Google Scholar 

  234. Papert S (1980) Mindstorms. Basic Books, New York, NY.

    Google Scholar 

  235. Parker DB(1985) Learning logic. Technical Report TR-47, Centre for Computational Research in Economics and Management Science, MIT.

    Google Scholar 

  236. Paun G (2002) Membrane Computing: An Introduction. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  237. Pawlak Z (1991) Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht, The Netherlands.

    MATH  Google Scholar 

  238. Pedrycz W (1993) Fuzzy neural networks and neurocomputations. Fuzzy Sets and Systems, 56: 1-28.

    Google Scholar 

  239. Pedrycz W (1997) Computational Intelligence: An Introduction. CRC Press, Boca Raton, FL.

    MATH  Google Scholar 

  240. Pedrycz W (1999) Computational Intelligence: an introduction. In: Szczepaniak PS (ed.) Computational Intelligence and Applications. Physica-Verlag, Berlin: 3-17.

    Google Scholar 

  241. Pellerin D, Thibault S (2005) Practical FPGA Programming in C. Prentice Hall, Engelwood Cliffs, NJ.

    Google Scholar 

  242. Percival DB, Walden AT (2000) Wavelet Methods for Time Series Analysis. Cambridge University Press, UK.

    MATH  Google Scholar 

  243. Perrone MP, Cooper LN (1993) When networks disagree: Ensemble methods for neural networks. In: Mammone RJ (ed.) Artificial Neural Networks for Speech and Vision. Chapman and Hall, New York, NY: 126-142.

    Google Scholar 

  244. Pfeifer R, Bongard J (2007) How the Body Shapes the Way We Think: A New View of Artificial Intelligence. MIT Press, Cambridge, MA.

    Google Scholar 

  245. Pinker S(2001) How the mind works.(available online at http://www. kurzweilai.net/meme/frame.html?m=4 - last accessed April 2007).

  246. Pollack JB (2006) Mindless intelligence. IEEE Intelligent Systems,213: 50-56.

    Google Scholar 

  247. Poole D, Mackworth A, Goebel R (1998) Computational Intelligence - A Logical Approach. Oxford University Press, New York, NY.

    MATH  Google Scholar 

  248. Powell MJD (1985) Radial basis funcitons for multivariate interpolation: a review. In: Proc. IMA Conf. Algorithms for the Approximaiton of Functions and Data, RMCS, Shrivenham, UK: 143-167.

    Google Scholar 

  249. Pritchard D, Negoita G (2006) A fuzzy - GA hybrid technique for optimisation of teaching sequences presented in ITSs. In: Reusch B (ed.) Computational Intelligence, Theory and Applications (Proc. 8th Fuzzy Days Conf.), 29 September-1 October, Dortmund, Germany. Lecture Notes in Computer Science 3505, Springer-Verlag, Berlin: 311-316.

    Google Scholar 

  250. Quinlan JR (1986) Induction of decision trees. Machine Learning, 11: 81-106.

    Google Scholar 

  251. Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  252. Quinlan JR (1996) Bagging, boosting, and C4.5. In: Proc. AAAI’96, Portland, OR. AAAI Press, Menlo Park, CA: 725-730.

    Google Scholar 

  253. Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart, Germany.

    Google Scholar 

  254. Rechenberg I (1994) Evolution strategy. In: Zurada J, Marks II RJ, Robinson C (eds.) Computational Intelligence - Imitating Life. IEEE Press, Piscataway, NJ.

    Google Scholar 

  255. Reidmiller M, Braub H (1992) RPROP: a fast adaptive learning algorithm, In: Proc. Intl. Symp. Computer and Information Sciences, November, Antalya, Turkey: 279-285. (ISCIS-VII)

    Google Scholar 

  256. Rieffel EG, Polak W (2000) Quantum computing for non-Physicists. ACM Computing Surveys, 323: 300-335.

    Google Scholar 

  257. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65: 386-408.

    MathSciNet  Google Scholar 

  258. Rosenblatt F (1962) The Principles of Neurodynamics. Spartan Books, Washington, DC.

    MATH  Google Scholar 

  259. Ruckert U (2002) ULSI architectures for ANNs. IEEE Micro, May-June: 10-19.

    Google Scholar 

  260. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by backpropagating errors. In: Rumelhart DE, McClelland JL (eds.) Parallel Dis-tributed Processing: Explorations in the Microstructure of Cognition I. MIT Press, Cambridge, MA.

    Google Scholar 

  261. Russell S, Norvig P (2001) Artificial Intleligence: A Modern Approach (2nd ed). Prenctice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  262. Samuel A (1959) Some studies in machine learning using the game of checkers. IBM J., 33: 210-229.

    Google Scholar 

  263. Sanchez E, Tomassini M (eds.) (1996) Towards Evolvable Hardware: The Evolutionary Engineering Approach. Springer-Verlag, Berlin.

    Google Scholar 

  264. Schaffer JD (1984) Some experiments in machine learning using vector evaluated genetic algorithms. PhD Thesis, Vanderbilt University, Nashville, TN

    Google Scholar 

  265. Schalkof RJ (1997) Artificial Neural Networks: Application to Ecology and Evolution. McGraw Hill, New York, NY.

    Google Scholar 

  266. Sekanina L (2004) Evolvable Components: From Theory to Hardware Implementation. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  267. Shann JJ, Fu HC (1995) A fuzzy neural network for rule acquiring on fuzzy control systems. J. Fuzzy Sets and Systems, 71: 345-357.

    Google Scholar 

  268. Sharkey AJC (ed.) (1999) Combining Artificial Neural Networks: Ensemble and Modular Multi-Net Systems. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  269. Sharkey AJC, Sharkey N (2006) The application of swarm intelligence to collective robots. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence. Idea Group, Hershey, PA: 157-185.

    Google Scholar 

  270. Shawe-Taylor J, Cristianni N (2000) Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, UK.

    Google Scholar 

  271. Shearer C, Caron P (2002) Handbook of Data Mining and Knowledge Discovery. Oxford University Press, UK.

    Google Scholar 

  272. Shimojima K, Fukuda T, Hasewaga I (1995) Self-tuning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm. J. Fuzzy Sets and Systems, 71: 294-309.

    Google Scholar 

  273. Simpson PK (1992) Fuzzy MIN-MAX neural networks - part 1: classification. IEEE Trans. Neural Networks, 35: 776-786.

    Google Scholar 

  274. Simpson PK (1993) Fuzzy MIN-MAX neural networks - part 2: clustering. IEEE Trans. Fuzzy Systems, 11: 32-45.

    Google Scholar 

  275. Sioutis C, Urlings P, Tweedale J, Ichalkaranje N (2004) Forming humanagent teams within hostil environments. In: Fulcher J, Jain LC (eds.) Applied Intelligent Systems: New Directions. Springer-Verlag, Berlin: 255-279.

    Google Scholar 

  276. Sipper M (1997) Evolution of Parallel Cellular Machines - The Cellular Programming Approach. Springer-Verlag, Berlin.

    Google Scholar 

  277. Sipper M, Sanchez E, Mange D, Tomassini M, Perez-Uribe A, Stauffer A (1997) A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans. Evolutionary Computation, 11: 83-97.

    Google Scholar 

  278. Sipper M, Mange D, Sanchez E (1999) Quo Vadis Evolvable Hardware? Communications ACM, 424: 50-59.

    Google Scholar 

  279. Sipper M (2002) Machine Nature: The Coming Age of Bio-Inspired Computing. McGraw-Hill, New York, NY.

    Google Scholar 

  280. Sisman-Yilmaz NA, Alpaslan FN, Jain LC (2004) Fuzzy multivariate autoregression method and its application. In: Fulcher J, Jain LC (eds.) Applied Intelligent Systems: New Directions. Springer-Verlag, Berlin: 281-300.

    Google Scholar 

  281. Sowa JF (2000) Knowledge Representation: Logical, Philosophical and Compu-tational Foundations. Brooks-Cole, Pacific Grove, CA.

    Google Scholar 

  282. Sprott JC (2003) Chaos and Time Series Analysis. Oxford University Press, UK.

    MATH  Google Scholar 

  283. Stair RM, Reynolds GW (1999) Principles of Information Systems (4th ed). Thomson, Cambridge, MA.

    Google Scholar 

  284. Stevens M (1997) Bayesian Methods for Mixturs of Normal Distributions. Oxford University Press, Oxford, UK.

    Google Scholar 

  285. Stock O, Zancanaro M(eds.)(2005) Multimodal Intelligent Information Presentation: Text, Speech and Language Technology. Springer-Varleg, Berlin.

    Google Scholar 

  286. Sundarajan N, Satchandran P (1998) Parallel Architectures for Artificial Neural Networks. IEEE Press, Los Alamitos, CA.

    Google Scholar 

  287. Sugeno M (1985) Industrial Applications of Industrial Control. North Holland, New York, NY.

    Google Scholar 

  288. Takagi H (1994) Cooperative systems of neural networks and fuzzy logic and its applicaiton to consumer products. In: Yen J, Langari R, Zadeh LA (eds.) Industrial Applications of Fuzzy Control and Intelligent Systems. Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  289. Tan KC, Khor EF, Lee TH (2005) Multiobjective Evolutionary Algorithms and Applications. Springer-Verlag, London, UK.

    MATH  Google Scholar 

  290. Tesauro G (1992) Temporal difference learning of backgammon strategy. In: Shafer G, Pearl J (eds.) Proc. Intl. Conf. Machine Learning - ICML92, July, Aberdeen, UK, Morgan Kaufmann, San Francisco, CA: 451-457.

    Google Scholar 

  291. Teuscher C (2006) Biologically uninspired computaitonal intelligence. Commu-nications ACM, 4911: 27-29.

    Google Scholar 

  292. Toffoli T, Margolus N(1987) Cellular Automata Machines. MIT Press, Cambridge, MA.

    Google Scholar 

  293. Tollenaere T (1990) SuperSAB: fast adaptive backpropagation with good scaling properties. Neural Networks, 75: 561-573.

    Google Scholar 

  294. Tran C, Abraham A, Jain LC (2006) Soft computing paradigms and regression trees in decision support systems. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence. Idea Group, Hershey, PA: 1-28.

    Google Scholar 

  295. Uppal FJ, Patton RJ, Palade V(2002) Neuro-fuzzy based fault diagnosis applied to an electro-pneumatic valve. In: Proc.15th IFAC World Congress, 21-26 July, Barcelnoa, Spain. Intl. Federation for Automatic Control: 2483-2488.

    Google Scholar 

  296. van Eck J, Waltham L, van den Berg J, Kaymak V (2006) Visualizing the CI Field. IEEE Computational Intelligence Magazine, 14: 6-10.

    Google Scholar 

  297. Vapnik VN (1998) Statistical Learning Theory. Wiley, New York, NY.

    MATH  Google Scholar 

  298. Verikas A, Lipnickas A, Malmqvist K, Bacauskiene M, Gelzinis A (1999) Soft combination of neural classifiers: a comparative study. Pattern Recognition Letters, 20: 429-444.

    Google Scholar 

  299. Verikas A, Lipnickas A(2002) Fusing neural networks through space partitioning and fuzzy integration. Neural Processing Letters, 16: 53-65.

    MATH  Google Scholar 

  300. Verma B, Panchal R (2006) Neural networks for the classification of benign and malignant patterns in digital mammograms. In: Fulcher J (ed.) Advances in Applied Artificial Intelligence. Idea Group, Hershey, PA: 251-272.

    Google Scholar 

  301. Von Altrock(1995) Fuzzy Logic and Neurofuzzy Applications Explained. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  302. Von Neumann J (1958) The Computer and the Brain. Yale University Press, New Haven, CT.

    MATH  Google Scholar 

  303. Wang D, Fang S-C (1997) A genetics-based approach for aggregated production planning in a fuzzy environment. IEEE Trans. Systems, Man and Cybernetics, 275: 636-645.

    MathSciNet  Google Scholar 

  304. Watson I (1997) Applying Base-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  305. Werbos P (1974) Beyond regression: new tools for prediction and analysis in the behavioral sciences. PhD Thesis, Harvard University, Cambridge, MA.

    Google Scholar 

  306. Werbos P (1994) The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. Wiley, New York, NY.

    Google Scholar 

  307. Wermter S, Sun R (2000) Hybrid Neural Systems. Springer-Verlag, Berlin.

    Google Scholar 

  308. Widrow B, Hoff ME (1960) Adaptive switching circuits. In: Proc. IRE WESCON Convention Record: Part 4, Computers: Man-Machine Systems, Los Angeles, CA: 96-104.

    Google Scholar 

  309. Wiener N (1948) Cybernetics. Wiley, New York, NY.

    Google Scholar 

  310. Wolfram S (1997) Cellular Automata and Complexity - Collected Papers. Addison Wesley, Reading, MA.

    Google Scholar 

  311. Willliams CP, Clearwater SH (2000) Ultimate Zero and One: Computing at the Quantum Frontier. Springer-Verlag, Berlin.

    Google Scholar 

  312. Williams J (1990) When expert systems are wrong. In: Proc. ACM SIGBDP Conf. - Trends and Directions in Expert Systems. Orlando, FL, ACM Press, New York, NY: 661-669.

    Google Scholar 

  313. Witten IH, Frank E (2005) Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kauffman, San Francisco, CA.

    MATH  Google Scholar 

  314. Wong B, Lai V, Lam J (2000) A bibliography of neural network business applications research: 1994 - 1998. Computer and Operations Research, 23: 1045-1076.

    Google Scholar 

  315. Wong HC, Sycara K (1999) Adding security and trust to multi-agent systems. In: Proc. Autonomous Agents’99, May, Seattle, WA: 149-161.

    Google Scholar 

  316. Wooldridge M, Jennings NR (1995) Intelligent agents: theory and practice. The Knowledge Engineering Review, 102: 115-152.

    Google Scholar 

  317. Wooldridge M(2002) An Introduction to Multiagent Systems. Wiley, Chichester, UK.

    Google Scholar 

  318. Xu L, Krzyak A, Suen CY (1992) Methods of combining multiple classifiers and their application to handwriting recognition. IEEE Trans. Systems, Man, and Cybernetics, 22: 418-435.

    Google Scholar 

  319. Yager R (1992) Implementing fuzzy logic controller using a neural network framework. Fuzzy Sets and Systems, 48: 53-64.

    MathSciNet  Google Scholar 

  320. Yao X (1999) Following the path to evolvable hardware. Communications ACM, 424: 47-49.

    Google Scholar 

  321. Yao YY (2000) Granular compuitng: basic issues and possible solutions. In: Proc. 5th Joint Conf. Information Sciences, 27 February-3 March, Atlantic City, NJ: 186-189.

    Google Scholar 

  322. Yao X, Highuchi T (1999) Promises and challenges of evolvabale hardware. IEEE Trans. Systems, Man and Cybernetcis-Part C, 291: 87-89.

    Google Scholar 

  323. Zadeh LA (1965) Fuzzy sets. Information and Control, 8: 338-353.

    MathSciNet  MATH  Google Scholar 

  324. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1: 3-28.

    MathSciNet  MATH  Google Scholar 

  325. Zadeh LA(1994) Fuzzy logic, neural networks, and soft computing. Communications ACM, 37(3): 77-84.

    MathSciNet  Google Scholar 

  326. Zadeh LA (1997) Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 19: 111-127.

    MathSciNet  Google Scholar 

  327. Zhang J, Morris J (1996) Process modeling fault diagnosis using fuzzy neural networks. Fuzzy Sets and Systems, 79: 127-140.

    Google Scholar 

  328. Zhang M (2008) Artificial Higher-Order Neural Networks for Economics and Business. IGI, Hershey, PA.

    MATH  Google Scholar 

  329. Zhang M, Fulcher J, Scofield R (1997) Rainfall estimation using artificial neural network group. Neurocomputing, 162: 97-115.

    Google Scholar 

  330. Zhang Y-Q, Fraser MD, Gagliano RA, Kandel A (2000) Granular neural networks for numerical-linguistic data fusion and knowledge discovery. IEEE Trans. Neural Networks, 113: 658-667.

    Google Scholar 

  331. Zhou Z-H, Wu J, Tang W (2002) Artificial neural network ensembles. Artificial Intelligence, 1371-2: 239-263.

    MathSciNet  MATH  Google Scholar 

  332. Zykov V, et al. (2005) Self-reproducing machines. Nature, 4357038: 163-164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fulcher, J. (2008). Computational Intelligence: An Introduction. In: Fulcher, J., Jain, L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78293-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78293-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78292-6

  • Online ISBN: 978-3-540-78293-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics