Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 115))

Biological brains and engineered electronic computers fall into different categories. Both are examples of complex information processing systems, but beyond this point their differences outweigh their similarities. Brains are flexible, imprecise, error-prone and slow; computers are inflexible, precise, deterministic and fast. The sets of functions at which each excels are largely non-intersecting. They simply seem to be different types of system. Yet throughout the (admittedly still rather short) history of computing, scientists and engineers have made attempts to cross-fertilize ideas from neurobiology into computing in order to build machines that operate in a manner more akin to the brain. Why is this?

Part of the answer is that brains display very high levels of concurrency and fault-tolerance in their operation, both of which are properties that we struggle to deliver in engineered systems. Understanding how the brain achieves these properties may help us discover ways to transfer them to our machines. In addition, despite their impressive ability to process numbers at ever-increasing rates, computers continue to be depressingly dumb, hard to use and totally lacking in empathy for their hapless users. If we could make interacting with a computer just a bit more like interacting with another person, life would be so much easier for so many people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian ED 1964 Basis of sensation. Haffner, London, UK.

    Google Scholar 

  2. Austin J, Kennedy J, Lees K (1995) The Advanced Uncertain Reasoning Archi-tecture, AURA. In: Proc. Weightless Neural Network Workshop (WNNW’95), 26-27 September, University of Kent, UK.

    Google Scholar 

  3. Bainbridge WJ, Furber SB(2002) CHAIN: a delay-insensitive chip area interconnect. IEEE Micro, 22: 16-23.

    Article  Google Scholar 

  4. Binzegger T, Douglas RJ, Martin KAC 2004 A quantitative map of the circuit of cat primary visual cortex. J. Neuroscience, 24(39): 8441-8453.

    Article  Google Scholar 

  5. Boahen KA 2000 Point-to-point connectivity between neuromorphic chips using address events. IEEE Trans. Circuits and Systems, 47(5): 416-434.

    Article  MATH  Google Scholar 

  6. Bower JM, Beeman D 1995 The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. Springer-Verlag, New York, NY.

    MATH  Google Scholar 

  7. Eliasmith C, Anderson CH 2003 Neural Engineering. MIT Press, Cambridge, MA.

    Google Scholar 

  8. Fatt P, Katz B 1952 Spontaneous subthreshold activity at motor nerve endings. J. Physiology, 117: 109-128.

    Google Scholar 

  9. Furber SB, Bainbridge WJ, Cumpstey JM, Temple S 2004 A sparse distributed memory based upon N-of-M codes. Neural Networks, 17(10): 1437-1451.

    Article  MATH  Google Scholar 

  10. Furber SB, Temple S, Brown AD (2006) On-chip and inter-chip networks for modeling large-scale neural systems. In: Proc. Intl. Symp. Circuits and Systems (ISCAS’06), 21-24 May, Kos, Greece. IEEE Press, Piscataway, NJ: 1945-1948.

    Google Scholar 

  11. Furber SB, Temple S, Brown AD 2006 High-performance computing for sys-tems of spiking neurons. In: Kovacs T, Marshall JAR (eds.) Proc. Adaptation in Artificial and Biological Systems Workshop (AISB’06) - GC5: Architecture of Brain and Mind 2, 3-6 April, Bristol, UK. Society for Aartificial Intelligence and the Simulaiton of behavior: 29-36.

    Google Scholar 

  12. Furber SB, Brown G, Bose J, Cumpstey MJ, Marshall P, Shapiro JL (2007) Sparse distributed memory using rank-order neural codes. IEEE Trans. Neural Networks, 18(3): 648-659.

    Article  Google Scholar 

  13. Gerstner W 1995 Time structure of the activity in neural network models. Physics Reviews E, 51: 738-758.

    Article  Google Scholar 

  14. Hebb DO 1949 The Organization of Behavior: A Neuropsychological Theory. Wiley, New York, NY.

    Google Scholar 

  15. Hellmich HH, Geike M, Griep P, Mahr P, Rafanelli M, Klar H (2005) Emulation engine for spiking neurons and adaptive synaptic weights. In: Proc. Intl. Joint Conf. Neural Networks (IJCNN’05), 31 July - 4 August, Montreal, Canada. 5: 3261-3266.

    Google Scholar 

  16. Hodgkin A, Huxley AF 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiology, 117: 500-544.

    Google Scholar 

  17. Izhikevich EM 2004 Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks, 15: 1063-1070.

    Article  Google Scholar 

  18. Izhikevich EM (2005) Simulation of large-scale brain models. (available online at:http://vesicle.nsi.edu/users/izhikevich/human brain simulation/Blue Brain. htm#Simulation of Large-Scale Brain Models - last accessed October 2007)

  19. Izhikevich EM 2006 Polychronization: computation with spikes. Neural Computation, 18: 245-282.

    Article  MATH  MathSciNet  Google Scholar 

  20. Jahnke A, Roth U, Klar H 1996 A SIMD/dataflow architecture for a neu-rocomputer for spike-processing neural networks (NESPINN). MicroNeuro, 96: 232-237.

    Google Scholar 

  21. Kanerva P 1988 Sparse Distributed Memory. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  22. Kohonen T 1972 Correlation matrix memories. IEEE Trans. Computers C, 21: 353-359.

    Article  MATH  Google Scholar 

  23. Laughlin SB, Sejnowski TJ(2003) Communication in neuronal networks. Science, 301: 1870-1874.

    Article  Google Scholar 

  24. Lichtsteiner P, Posch C, Delbruck T (2006) A 128 × 128 120 dB 30 mW asyn-chronous vision sensor that responds to relative intensity change. In: Proc. Intl. Solid State Circuits Conf. (ISSCC’06), 4-9 February, San Francisco, CA: 508-509.

    Google Scholar 

  25. Lømo T 2003 The discovery of long-term potentiation. Philosophical Trans. Royal Soc. B, 358: 617-620.

    Article  Google Scholar 

  26. Mahowald M 1992 VLSI analogs of neuronal visual processing: a synthesis of form and function. PhD Dissertation, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  27. Markram H 2006 The blue brain project. Nature Reviews Neuroscience, 7: 153-160.

    Article  Google Scholar 

  28. McCulloch WS, Pitts W 1943 A logical calculus of the ideas immanent in nervous activity. Bulletin Mathematical Biophysiology, 5: 115-133.

    Article  MATH  MathSciNet  Google Scholar 

  29. Mead CA 1989 Analog VLSI and Neural Systems. Addison Wesley, Reading, MA.

    MATH  Google Scholar 

  30. Mead CA 1990 Neuromorphic electronic systems. Proc. IEEE, 78(10): 1629-1636.

    Article  Google Scholar 

  31. Mehrtash N, Jung D, Hellmich HH, Schoenauer T, Lu VT, Klar H 2003 Synaptic plasticity in spiking neural networks (SP2 INN): a system approach. IEEE Trans. Neural Networks, 14(5): 980-992.

    Article  Google Scholar 

  32. Moore GE 1965 Cramming more components onto integrated circuits. Electronics, 38(8): 114-117.

    Google Scholar 

  33. Mountcastle V 1978 An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds.) The Mindful Brain. MIT Press, Cambridge, MA: 7-50.

    Google Scholar 

  34. NEURON (available online at: http://www.neuron.yale.edu/neuron- last accessed October 2007).

  35. O’Keefe J, Recce ML 1993 Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3): 317-330.

    Article  Google Scholar 

  36. OReilly RC 1996 Biologically plausible error-driven learning using local activation differences: the generalized recirculation algorithm. Neural Computation, 8(5): 895-938.

    Article  MathSciNet  Google Scholar 

  37. Prange SJ, Klar H (1993) Cascadable digital emulator IC for 16 biological neurons. In: Proc. 40th Intl. Solid State Cicruits Conf. (ISSCC’93), 24-26 February, San Francisco, CA: 234-235, 0294.

    Google Scholar 

  38. Rall W 1959 Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1: 491-527.

    Article  Google Scholar 

  39. Saudargiene A, Porr B, Wörgötter F 2004 How the shape of pre- and post-synaptic signals can influence STDP: a biophysical model. Neural Computation, 16: 595-625.

    Article  MATH  Google Scholar 

  40. Schoenauer T, Mehrtash N, Jahnke A, Klar H 1998 MASPINN: novel concepts for a neuro-accelerator for spiking neural networks. In: Lindblad T, Padgett ML, Kinser JM (eds.) Proc. Workshop on Virtual Intelligence and Dynamic Neural Networks (VIDYNN’98), 26-28 June, Stockholm, Sweden: 87-97.

    Google Scholar 

  41. Schwartz J, Begley S 2003 The Mind and the Brain: Neuroplasticity and the Power of Mental Force. Regan Books, New York, NY.

    Google Scholar 

  42. Sivilotti M 1991 Wiring considerations in analog VLSI systems, with applica-tion to field-programmable networks. PhD Dissertation, California Institute of Techology, Pasadena, CA.

    Google Scholar 

  43. Sloman A (2004) GC5: The architecture of brain and mind. In: Hoare CAR, Milner R (eds.) UKCRC Grand Challenges in Computing - Research. British Computer Society, Edinburgh, UK: 21-24.

    Google Scholar 

  44. Van Rullen R, Thorpe S 2001 Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Computation, 13(6): 1255-1283.

    Article  MATH  Google Scholar 

  45. Werbos P 1994 The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. Wiley, New York, NY.

    Google Scholar 

  46. Willshaw DJ, Buneman OP, Longuet-Higgins HC 1969 Non-holographic associative memory. Nature, 222: 960-962.

    Article  Google Scholar 

  47. Yang Z, Murray AF, Wörgötter F, Cameron KL, Boonsobhak V 2006 A neuro-morphic depth-from-motion vision model with STDP adaptation. IEEE Trans. Neural Networks, 17(2): 482-495.

    Article  Google Scholar 

  48. Zhu J, Sutton P 2003 FPGA Implementations of neural networks - a survey of a decade of progress. In: Cheung PYK, Constantinides GA, de Sousa JT (eds.) Proc. 13th Annual Conf. Field Programmable Logic and Applications (FPL’03), 1-3 September, Lisbon, Portugal. Springer-Verlag, Berlin: 1062-1066.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Furber, S., Temple, S. (2008). Neural Systems Engineering. In: Fulcher, J., Jain, L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78293-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78293-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78292-6

  • Online ISBN: 978-3-540-78293-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics