In many real life settings, high quality solutions to hard optimization problems such as flight scheduling or load balancing in telecommunication networks are required in a short amount of time. Due to the practical importance of optimization problems for industry and science, many algorithms to tackle them have been developed. One important class of such algorithms are metaheuristics. The field of metaheuristic research has enjoyed a considerable popularity in the last decades. In this introductory chapter we first provide a general overview on metaheuristics. Then we turn towards a new and highly successful branch of metaheuristic research, namely the hybridization of metaheuristics with algorithmic components originating from other techniques for optimization. The chapter ends with an outline of the remaining book chapters.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven. Simulated annealing. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 91–120. John Wiley & Sons, Chichester, UK, 1997.
E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester, UK, 1997.
E. Alba, editor. Parallel Metaheuristics: A New Class of Algorithms. John Wiley, 2005.
T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.
T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation. Institute of Physics Publishing Ltd, Bristol, UK, 1997.
R. Battiti and M. Protasi. Reactive Search, a history-base heuristic for MAX-SAT. ACM Journal of Experimental Algorithmics, 2:Article 2, 1997.
R. Battiti and G. Tecchiolli. The Reactive Tabu Search. ORSA Journal on Computing, 6(2):126–140, 1994.
S. Binato, W. J. Hery, D. Loewenstern, and M. G. C. Resende. A greedy randomized adaptive search procedure for job shop scheduling. In P. Hansen and C. C. Ribeiro, editors, Essays and surveys on metaheuristics, pages 59–79. Kluwer Academic Publishers, 2001.
C. Blum. Ant colony optimization. Physics of Life Reviews, 2(4):353–373, 2005.
C. Blum. Beam-ACO—Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research, 32(6):1565–1591, 2005.
C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.
S. Boettcher and A. G. Percus. Optimization with extremal dynamics. Complexity, 8:57–62, 2003.
P. Calégary, G. Coray, A. Hertz, D. Kobler, and P. Kuonen. A taxonomy of evolutionary algorithms in combinatorial optimization. Journal of Heuristics, 5:145–158, 1999.
V. Černý. A thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45:41–51, 1985.
P. Chardaire, J. L. Lutton, and A. Sutter. Thermostatistical persistency: A powerful improving concept for simulated annealing algorithms. European Journal of Operational Research, 86:565–579, 1995.
C. A. Coello Coello. An Updated Survey of GA-Based Multiobjective Optimization Techniques. ACM Computing Surveys, 32(2):109–143, 2000.
D. T. Connolly. An improved annealing scheme for the QAP. European Journal of Operational Research, 46:93–100, 1990.
T. G. Crainic and M. Toulouse. Introduction to the special issue on Parallel Meta-Heuristics. Journal of Heuristics, 8(3):247–249, 2002.
T. G. Crainic and M. Toulouse. Parallel Strategies for Meta-heuristics. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management Science. Kluwer Academic Publishers, Norwell, MA, 2002.
F. Della Croce and V. T’kindt. A Recovering Beam Search algorithm for the one machine dynamic total completion time scheduling problem. Journal of the Operational Research Society, 53(11):1275–1280, 2002.
M. Dell’Amico, A. Lodi, and F. Maffioli. Solution of the Cumulative Assignment Problem with a well–structured Tabu Search method. Journal of Heuristics, 5:123–143, 1999.
M. L. den Besten, T. Stützle, and M. Dorigo. Design of iterated local search algorithms: An example application to the single machine total weighted tardiness problem. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl, and H. Tijink, editors, Applications of Evolutionary Computing: Proceedings of EvoWorkshops 2001, volume 2037 of Lecture Notes in Computer Science, pages 441–452. Springer-Verlag, Berlin, Germany, 2001.
J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behaviour, 3:159–168, 1990.
J. Denzinger and T. Offerman. On cooperation between evolutionary algorithms and other search paradigms. In Proceedings of Congress on Evolutionary Computation – CEC’1999, pages 2317–2324, 1999.
M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66, 1997.
M. Dorigo and T. Stützle. http://www.metaheuristics.net/, 2000. Visited in January 2003.
M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.
G. Dueck. New Optimization Heuristics. Journal of Computational Physics, 104:86–92, 1993.
G. Dueck and T. Scheuer. Threshold Accepting: A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing. Journal of Computational Physics, 90:161–175, 1990.
W. Feller. An Introduction to Probability Theory and its Applications. John Whiley, 1968.
T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6:109–133, 1995.
P. Festa and M. G. C. Resende. GRASP: An annotated bibliography. In C. C. Ribeiro and P. Hansen, editors, Essays and Surveys on Metaheuristics, pages 325–367. Kluwer Academic Publishers, 2002.
A. Fink and S. Voß. Generic metaheuristics application to industrial engineering problems. Computers & Industrial Engineering, 37:281–284, 1999.
M. Fleischer. Simulated Annealing: past, present and future. In C. Alexopoulos, K. Kang, W. R. Lilegdon, and G. Goldsman, editors, Proceedings of the 1995 Winter Simulation Conference, pages 155–161, 1995.
F. Focacci, F. Laburthe, and A. Lodi. Local Search and Constraint Programming. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management Science. Kluwer Academic Publishers, Norwell, MA, 2002.
D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1):3–14, 1994.
G. B. Fogel, V. W. Porto, D. G. Weekes, D. B. Fogel, R. H. Griffey, J. A. McNeil, E. Lesnik, D. J. Ecker, and R. Sampath. Discovery of RNA structural elements using evolutionary computation. Nucleic Acids Research, 30(23):5310–5317, 2002.
L. J. Fogel. Toward inductive inference automata. In Proceedings of the International Federation for Information Processing Congress, pages 395–399, Munich, 1962.
L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated Evolution. Wiley, 1966.
C. Fonlupt, D. Robilliard, P. Preux, and E. G. Talbi. Fitness landscapes and performance of meta-heuristics. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, 1999.
L. M. Gambardella and M. Dorigo. Ant Colony System hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 12(3):237–255, 2000.
M. R. Garey and D. S. Johnson. Computers and intractability; a guide to the theory of NP-completeness. W. H. Freeman, 1979.
M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the capacitated VRP. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications, pages 129–154. SIAM, Philadelphia, 2002.
F. Glover. Heuristics for Integer Programming Using Surrogate Constraints. Decision Sciences, 8:156–166, 1977.
F. Glover. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13:533–549, 1986.
F. Glover. Tabu Search Part II. ORSA Journal on Computing, 2(1):4–32, 1990.
F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading, MA, 1989.
J. J. Grefenstette. A user’s guide to GENESIS 5.0. Technical report, Navy Centre for Applied Research in Artificial Intelligence, Washington D.C., USA, 1990.
P. Hansen. The steepest ascent mildest descent heuristic for combinatorial programming. In Congress on Numerical Methods in Combinatorial Optimization, Capri, Italy, 1986.
P. Hansen and N. Mladenović. Variable Neighborhood Search for the p-Median. Location Science, 5:207–226, 1997.
P. Hansen and N. Mladenović. An introduction to variable neighborhood search. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, chapter 30, pages 433–458. Kluwer Academic Publishers, 1999.
P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130:449–467, 2001.
A. Hertz and D. Kobler. A framework for the description of evolutionary algorithms. European Journal of Operational Research, 126:1–12, 2000.
T. Hogg and C. P. Williams. Solving the really hard problems with cooperative search. In Proceedings of AAAI93, pages 213–235. AAAI Press, 1993.
J. H. Holland. Adaption in natural and artificial systems. The University of Michigan Press, Ann Harbor, MI, 1975.
H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications. Elsevier, Amsterdam, The Netherlands, 2004.
T. Ibaraki and K. Nakamura. Packing problems with soft rectangles. In F. Almeida, M. Blesa, C. Blum, J. M. Moreno, M. Pérez, A. Roli, and M. Sampels, editors, Proceedings of HM 2006 – 3rd International Workshop on Hybrid Metaheuristics, volume 4030 of Lecture Notes in Computer Science, pages 13–27. Springer-Verlag, Berlin, Germany, 2006.
L. Ingber. Adaptive simulated annealing (ASA): Lessons learned. Control and Cybernetics – Special Issue on Simulated Annealing Applied to Combinatorial Optimization, 25(1):33–54, 1996.
D. S. Johnson and L. A. McGeoch. The traveling salesman problem: a case study. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 215–310. John Wiley & Sons, Chichester, UK, 1997.
T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, Univ. of New Mexico, Albuquerque, NM, 1995.
P. Kilby, P. Prosser, and P. Shaw. Guided Local Search for the Vehicle Routing Problem with time windows. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 473–486. Kluwer Academic Publishers, 1999.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.
H. R. Lourenço, O. Martin, and T. Stützle. A beginner’s introduction to Iterated Local Search. In Proceedings of MIC’2001 – Meta–heuristics International Conference, volume 1, pages 1–6, 2001.
H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Management Science, pages 321–353. Kluwer Academic Publishers, Norwell, MA, 2002.
V. Maniezzo. Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem. INFORMS Journal on Computing, 11(4):358–369, 1999.
O. Martin and S. W. Otto. Combining Simulated Annealing with Local Search Heuristics. Annals of Operations Research, 63:57–75, 1996.
O. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for the traveling salesman problem. Complex Systems, 5(3):299–326, 1991.
D. Merkle, M. Middendorf, and H. Schmeck. Ant Colony Optimization for Resource-Constrained Project Scheduling. IEEE Transactions on Evolutionary Computation, 6(4):333–346, 2002.
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.
Z. Michalewicz and M. Michalewicz. Evolutionary computation techniques and their applications. In Proceedings of the IEEE International Conference on Intelligent Processing Systems, pages 14–24, Beijing, China, 1997. Institute of Electrical & Electronics Engineers, Incorporated.
M. Milano and A. Roli. MAGMA: A multiagent architecture for metaheuristics. IEEE Trans. on Systems, Man and Cybernetics – Part B, 34(2):925–941, 2004.
P. Mills and E. Tsang. Guided Local Search for solving SAT and weighted MAX-SAT Problems. In Ian Gent, Hans van Maaren, and Toby Walsh, editors, SAT2000, pages 89–106. IOS Press, 2000.
M. Mitchell. An introduction to genetic algorithms. MIT press, Cambridge, MA, 1998.
P. Moscato. Memetic algorithms: A short introduction. In F. Glover D. Corne and M. Dorigo, editors, New Ideas in Optimization. McGraw-Hill, 1999.
G. L. Nemhauser and A. L. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons, New York, 1988.
E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job-shop problem. Management Science, 42(2):797–813, 1996.
I. H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations Research, 63:513–623, 1996.
P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International Journal of Production Research, 26:297–307, 1988.
C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization – Algorithms and Complexity. Dover Publications, Inc., New York, 1982.
L. S. Pitsoulis and M. G. C. Resende. Greedy Randomized Adaptive Search procedure. In P. M. Pardalos and M. G. C. Resende, editors, Handbook of Applied Optimization, pages 168–183. Oxford University Press, 2002.
M. Prais and C. C. Ribeiro. Reactive GRASP: An application to a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing, 12:164–176, 2000.
S. Prestwich. Combining the Scalability of Local Search with the Pruning Techniques of Systematic Search. Annals of Operations Research, 115:51–72, 2002.
S. Prestwich and A. Roli. Symmetry breaking and local search spaces. In Proceedings of CPAIOR 2005, volume 3524 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 2005.
J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification. In J. Mira and J. R. Álvarez, editors, Proceedings of the First International Work-Conference on the Interplay Between Natural and Artificial Computation, volume 3562 of Lecture Notes in Computer Science, pages 41–53. Springer-Verlag, Berlin, Germany, 2005.
G. R. Raidl. A unified view on hybrid metaheuristics. In F. Almeida, M. Blesa, C. Blum, J. M. Moreno, M. Pérez, A. Roli, and M. Sampels, editors, Proceedings of HM 2006 – 3rd International Workshop on Hybrid Metaheuristics, volume 4030 of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, Berlin, Germany, 2006.
I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.
C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publishing, Oxford, England, 1993.
C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Perspectives. A Guide to GA Theory. Kluwer Academic Publishers, Boston (USA), 2002.
M. G. C. Resende and C. C. Ribeiro. A GRASP for graph planarization. Networks, 29:173–189, 1997.
C. C. Ribeiro and M. C. Souza. Variable neighborhood search for the degree constrained minimum spanning tree problem. Discrete Applied Mathematics, 118:43–54, 2002.
A. Roli. Symmetry-breaking and local search: A case study. In SymCon’04 – 4th International Workshop on Symmetry and Constraint Satisfaction Problems. 2004.
A. Schaerf, M. Cadoli, and M. Lenzerini. LOCAL++: A C++ framework for local search algorithms. Software Practice & Experience, 30(3):233–257, 2000.
G. R. Schreiber and O. C. Martin. Cut size statistics of graph bisection heuristics. SIAM Journal on Optimization, 10(1):231–251, 1999.
P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In M. Maher and J.-F. Puget, editors, Principle and Practice of Constraint Programming – CP98, volume 1520 of Lecture Notes in Computer Science, pages 417–431. Springer-Verlag, 1998.
A. Shmygelska and H. H. Hoos. An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics, 6(30):1–22, 2005.
M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and A. Stauffer. A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems. IEEE Transactions on Evolutionary Computation, 1(1):83–97, 1997.
L. Sondergeld and S. Voß. Cooperative intelligent search using adaptive memory techniques. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, chapter 21, pages 297–312. Kluwer Academic Publishers, 1999.
W. M. Spears, K. A. De Jong, T. Bäck, D. B. Fogel, and H. de Garis. An overview of evolutionary computation. In P. B. Brazdil, editor, Proceedings of the European Conference on Machine Learning (ECML-93), volume 667, pages 442–459, Vienna, Austria, 1993. Springer-Verlag.
P. F. Stadler. Landscapes and their correlation functions. Journal of Mathematical Chemistry, 20:1–45, 1996. Also available as SFI preprint 95-07-067.
T. Stützle. Local Search Algorithms for Combinatorial Problems – Analysis, Algorithms and New Applications. DISKI – Dissertationen zur Künstliken Intelligenz. infix, Sankt Augustin, Germany, 1999.
T. Stützle and H. H. Hoos. \({\cal M}{\cal A}{\cal X}\)-\({\cal M}{\cal I}{\cal N}\) Ant System. Future Generation Computer Systems, 16(8):889–914, 2000.
É. D. Taillard. Robust Taboo Search for the Quadratic Assignment Problem. Parallel Computing, 17:443–455, 1991.
E.-G. Talbi. A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics, 8(5):541–564, 2002.
M. Toulouse, T. G. Crainic, and B. Sansò. An experimental study of the systemic behavior of cooperative search algorithms. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, chapter 26, pages 373–392. Kluwer Academic Publishers, 1999.
D. Urošević, J. Brimberg, and N. Mladenović. Variable neighborhood decomposition search for the edge weighted k-cardinality tree problem. Computers & Operations Research, 31:1205–1213, 2004.
P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job Shop Scheduling by Simulated Annealing. Operations Research, 40:113–125, 1992.
M. D. Vose. The simple genetic algorithm: foundations and theory. MIT Press, Cambridge, MA, 1999.
S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.
S. Voß and D. Woodruff, editors. Optimization Software Class Libraries. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
C. Voudouris. Guided Local Search for Combinatorial Optimization Problems. PhD thesis, Department of Computer Science, University of Essex, 1997. pp. 166.
C. Voudouris and E. Tsang. Guided Local Search. European Journal of Operational Research, 113(2):469–499, 1999.
A. S. Wade and V. J. Rayward-Smith. Effective local search for the Steiner tree problem. Studies in Locational Analysis, 11:219–241, 1997. Also in Advances in Steiner Trees, ed. by Ding-Zhu Du, J. M.Smith and J. H. Rubinstein, Kluwer, 2000.
D. Whitley. The GENITOR algorithm and selective pressure: Why rank-based allocation of reproductive trials is best. In Proceedings of the 3rd International Conference on Genetic Algorithms, ICGA 1989, pages 116–121. Morgan Kaufmann Publishers, 1989.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Blum, C., Roli, A. (2008). Hybrid Metaheuristics: An Introduction. In: Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds) Hybrid Metaheuristics. Studies in Computational Intelligence, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78295-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-78295-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78294-0
Online ISBN: 978-3-540-78295-7
eBook Packages: EngineeringEngineering (R0)