Skip to main content

Bias/Variance Analysis for Relational Domains

  • Conference paper
Inductive Logic Programming (ILP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4894))

Included in the following conference series:

Abstract

Bias/variance analysis [1] is a useful tool for investigating the performance of machine learning algorithms. Conventional analysis decomposes loss into errors due to aspects of the learning process with an underlying assumption that there is no variation in model predictions due to the inference process used for prediction. This assumption is often violated when collective inference models are used for classification of relational data.

In relational data, when there are dependencies among the class labels of related instances, the inferences about one object can be used to improve the inferences about other related objects. Collective inference techniques exploit these dependencies by jointly inferring the class labels in a test set. This approach can produce more accurate predictions than conditional inference for each instance independently, but it also introduces an additional source of error, both through the use of approximate inference algorithms and through variation in the availability of test set information. To date, the impact of inference error on relational model performance has not been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4, 1–58 (1992)

    Article  Google Scholar 

  2. Neville, J., Jensen, D.: Dependency networks for relational data. In: Proceedings of the 4th IEEE International Conference on Data Mining, pp. 170–177 (2004)

    Google Scholar 

  3. Neville, J., Jensen, D.: Leveraging relational autocorrelation with latent group models. In: Proceedings of the 5th IEEE International Conference on Data Mining, pp. 322–329 (2005)

    Google Scholar 

  4. Neville, J., Jensen, D.: A bias-variance decomposition for collective inference models. Machine Learning Journal, under submission (invited)

    Google Scholar 

  5. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pp. 485–492 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hendrik Blockeel Jan Ramon Jude Shavlik Prasad Tadepalli

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neville, J., Jensen, D. (2008). Bias/Variance Analysis for Relational Domains. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds) Inductive Logic Programming. ILP 2007. Lecture Notes in Computer Science(), vol 4894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78469-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78469-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78468-5

  • Online ISBN: 978-3-540-78469-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics