Skip to main content

A Bipolar Interpretation of Fuzzy Decision Trees

  • Chapter
Data Mining: Foundations and Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 118))

  • 1211 Accesses

Summary

Decision tree construction is a popular approach in data mining and machine learning, and some variants of decision tree algorithms have been proposed to deal with different types of data. In this paper, we present a bipolar interpretation of fuzzy decision trees. With the interpretation, various types of decision trees can be represented in a unified form. The edges of a fuzzy decision tree are labeled by fuzzy decision logic formulas and the nodes are split according to the satisfaction of these formulas in the data records. We present a construction algorithm for general fuzzy decision trees and show its application to different types of training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar possibilistic representations. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pages 45–52, Morgan Kaufmann, San Francisco, CA, 2002.

    Google Scholar 

  2. Y.L. Chen, C.L. Hsu, and S.C. Chou. Constructing a multi-valued and multi-labeled decision tree. Expert Systems with Applications, 25:199–209, 2003.

    Article  Google Scholar 

  3. V.V. Croos and T.A. Sudkamp. Similarity and Compatibility in Fuzzy Set Theory. Physica-Verlag, Wurzburg (Wien), 2002.

    Google Scholar 

  4. D. Dubois and H. Prade. An introduction to possibilistic and fuzzy logics. In P. Smets, A. Mamdani, D. Dubois, and H. Prade, editors, Non-Standard Logics for Automated Reasoning, pages 253–286. Academic Press, 1988.

    Google Scholar 

  5. P. Jaccard. Nouvelles recherches sur la distribution florale. Bulletin de la Societe de Vaud des Sciences Naturelles, 44:223, 1908.

    Google Scholar 

  6. C.Z. Janikow. Fuzzy decision trees: Issues and methods. IEEE Transcations on Systems, Man, and Cybernetics, 28(1):1–14, 1998.

    Article  Google Scholar 

  7. A. Kandel. Fuzzy Mathematical Techniques with Applications. Addison-Wesley, 1986.

    Google Scholar 

  8. M. Kryszkiewicz. Properties of incomplete information systems in the framework of rough sets. In L. Polkowski and A. Skowron, editors, Rough Sets in Knowledge Discovery, pages 422–450. Physica-Verlag, 1998.

    Google Scholar 

  9. M. Kryszkiewicz and H. Rybiński. Reducing information systems with uncertain attributes. In Z. W. Raś and M. Michalewicz, editors, Proceedings of the 9th ISMIS, LNAI 1079, pages 285–294. Springer, Berlin Heidelberg New York, 1996.

    Google Scholar 

  10. M. Kryszkiewicz and H. Rybiński. Reducing information systems with uncertain real value attributes. In Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, pages 1165–1169, 1996.

    Google Scholar 

  11. M. Mehta, R. Agrawal, and J. Rissanen. Sliq: A fast scalable classifier for data mining. In Proceedings of the 5th International Conference on Extending Database Technology, pages 18–32, Avigon, France, 1996.

    Google Scholar 

  12. Z. Pawlak. Rough Sets–Theoretical Aspects of Reasoning about Data. Kluwer, 1991.

    Google Scholar 

  13. J.R. Quinlan. Induction on decision trees. Machine Learning, 1:81–106, 1986.

    Google Scholar 

  14. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, CA, 1993.

    Google Scholar 

  15. R. Rastogi and K. Shim. Public: A decision tree classifier that integrates building and pruning. Data Mining and Knowledge Discovery, 1(4):315–344, 2000.

    Article  Google Scholar 

  16. R. Słowiński and J. Stefanowski. Rough-set reasoning about uncertain data. Technical Report ICS-26/94, Warsaw University of Technology, Warsaw, Poland, 1994.

    Google Scholar 

  17. R. Słowiński and J. Stefanowski. Rough-set reasoning about uncertain data. Fundamenta Informaticae, 27(2–3):229–243, 1996.

    MATH  MathSciNet  Google Scholar 

  18. R.R. Sokal and P.H. Sneath. Principles of Numerical Taxonomy. Freeman, San Francisco, CA, 1963.

    Google Scholar 

  19. L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1):3–28, 1978.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fan, TF., Liau, CJ., Liu, DR. (2008). A Bipolar Interpretation of Fuzzy Decision Trees. In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, CJ. (eds) Data Mining: Foundations and Practice. Studies in Computational Intelligence, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78488-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78488-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78487-6

  • Online ISBN: 978-3-540-78488-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics