Associative pattern retrieval, one of the hallmarks of intelligence, cannot only be realized by the traditional attractor dynamics of the Hopfield model but also by a reversible, unitary evolution of quantum bits (qubits). We will show that qubit networks with long-range interactions governed by the Hebb rule can be used as quantum associative memories. Starting from a uniform superposition, the unitary evolution generated by these interactions drives the network through a quantum phase transition at a critical computation time, after which ferromagnetic order guarantees that a measurement retrieves the stored patterns. The memory capacity of these qubit networks depends on the computation time: the maximum capacity is reached at a memory density α = p/n = 1, after which a phase transition to a quantum spin glass state implies total amnesia. At these loading factors, however the retrieval quality is poor; admitting only a few percent of errors requires lower memory loading factors, comparable with the classical Hopfield model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
For a review see: B. Müller and J. Reinhardt, Neural Networks, Springer-Verlag, Berlin, Germany 1990.
For a review see: M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.
J.J. Hopfield, Proc. Natl. Acad. Scie. USA 79, p. 2554, 1982.
M. C. Diamantini and C. A. Trugenberger, Phys. Rev. Lett. 97, p. 130503, 2006.
M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay and A. J. Landahl, Phys. Rev. A71, p. 032312, 2005.
O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch and I. Bloch, Nature 425, p.937, 2003.
B. E. Kane, Nature 393, p.133, 2003.
W. S. McCullogh and W. Pitts, Bull. Math. Biophys. 5, p.115, 1943.
For a review see e.g. M. Mezard, G. Parisi and M. A. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore, 1987.
See e.g. G. Parisi, Statistical Field Theory, Addison-Wesley, Redwood City, USA, 1988.
For a review see: S. Sachdev, Quantum Phase Transition, Cambridge University Press, Cambridge, UK 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Trugenberger, C.A., Diamantini, C.M. (2008). Quantum Associative Pattern Retrieval. In: Nedjah, N., Coelho, L.d.S., Mourelle, L.d.M. (eds) Quantum Inspired Intelligent Systems. Studies in Computational Intelligence, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78532-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-78532-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78531-6
Online ISBN: 978-3-540-78532-3
eBook Packages: EngineeringEngineering (R0)