Skip to main content

Using Multiple Models to Imitate the YMCA

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4953))

  • 1578 Accesses

Abstract

Learning by imitation enables people to program robots simply by showing them what to do, instead of having to specify the motor commands of the robot. To achieve imitative behaviour in a simulated robot, a modular connectionist architecture for motor learning and control was implemented. The architecture was used to imitate human dance movements. The architecture self-organizes the decomposition of the movement to be imitated across different modules. The results show that the decomposition of the movement tends to be both competitive (i.e. one module dominates the others for a part of the movement) and collaborative (i.e. modules cooperate in controlling the robot).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences 3(6), 233–242 (1999)

    Article  Google Scholar 

  2. Piaget, J.: Play, dreams and imitation in childhood. W. W. Norton, New York (1962)

    Google Scholar 

  3. Meltzoff, A.N., Moore, M.K.: Explaining facial imitation: A theoretical model. Early Development and Parenting 6, 179–192 (1997)

    Article  Google Scholar 

  4. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)

    Article  Google Scholar 

  5. Arbib, M.: The Mirror System, Imitation, and the Evolution of Language. In: Imitation in animals and artifacts, pp. 229–280. MIT Press, Cambridge (2002)

    Google Scholar 

  6. Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mindreading. Trends in Cognitive Sciences 2(12) (1998)

    Google Scholar 

  7. Demiris, Y., Hayes, G.: Imitation as a dual-route process featuring predictive and learning components: a biologically-plausible computational model. In: Imitation in animals and artifacts, pp. 327–361. MIT Press, Cambridge (2002)

    Google Scholar 

  8. Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution and recognition of actions. Robotics and Autonomous Systems 54, 361–369 (2006)

    Article  Google Scholar 

  9. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philosophical Transactions: Biological Sciences 358(1431), 593–602 (2003)

    Article  Google Scholar 

  10. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends in Cognitive Sciences 2(9) (1998)

    Google Scholar 

  11. Matarić, M.J.: Sensory-Motor Primitives as a Basis for Learning by Imitation: Linking Perception to Action and Biology to Robotics. In: Imitation in animals and artifacts, pp. 392–422. MIT Press, Cambridge (2002)

    Google Scholar 

  12. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)

    Article  Google Scholar 

  13. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992)

    Article  Google Scholar 

  14. Pfeifer, R., Scheier, C.: Understanding Intelligence, Illustrator-Isabelle Follath. MIT Press, Cambridge, MA, USA (2001)

    Google Scholar 

  15. Ans, B., Rousset, S., French, R.M., Musca, S.: Self-refreshing memory in artificial neural networks: learning temporal structures without catastrophic forgetting. Connection Science 16(2), 71–99 (2004)

    Article  Google Scholar 

  16. Kawato, M.: Feedback-error-learning neural network for supervised motor learning. In: Eckmiller, R. (ed.) Advanced neural computers, pp. 365–372 (1990)

    Google Scholar 

  17. Nehaniv, C.L., Dautenhahn, K.: The Correspondence Problem. In: Imitation in Animals and Artifacts, pp. 41–63. MIT Press, Cambridge (2002)

    Google Scholar 

  18. Torres, E.B., Zipser, D.: Simultaneous control of hand displacements and rotations in orientation-matching experiments. J. Appl. Physiol. 96(5), 1978–1987 (2004)

    Article  Google Scholar 

  19. Tidemann, A., Öztürk, P.: Self-organizing multiple models for imitation: Teaching a robot to dance the YMCA. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 291–302. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Tolani, D., Badler, N.I.: Real-time inverse kinematics of the human arm. Presence 5(4), 393–401 (1996)

    Google Scholar 

  21. Jaeger, H., Haas, H.: Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  22. d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor behaviors. PNAS 102(8), 3076–3081 (2005)

    Article  Google Scholar 

  23. Diedrichsen, J., Hazeltine, E., Kennerley, S., Ivry, R.B.: Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychological Science 12(6), 493–498 (2001)

    Article  Google Scholar 

  24. Kuniyoshi, Y., Yorozu, Y., Ohmura, Y., Terada, K., Otani, T., Nagakubo, A., Yamamoto, T.: From humanoid embodiment to theory of mind. In: Pierre, S., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 202–218. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Geun Sik Jo Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tidemann, A. (2008). Using Multiple Models to Imitate the YMCA. In: Nguyen, N.T., Jo, G.S., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2008. Lecture Notes in Computer Science(), vol 4953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78582-8_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78582-8_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78581-1

  • Online ISBN: 978-3-540-78582-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics