Skip to main content

Holonic Multi-agent System Model for Fuzzy Automatic Speech / Speaker Recognition

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2008)

Abstract

An automatic speech / speaker recognition (ASSR) system has to adapt to possible changes of speaker and environment conditions, and act as close as possible to the way a human recognizes speeches / speakers. This kind of very complex system has to deal with speech signals, looking for the integration of different information sources; and this is precisely the reason to use fuzzy logic. The main objective of this paper is the description of a robust, intelligent and adaptive system, modeled as a multi-agent system (MAS), forming a recursive hierarchy of MAS denominated holonic MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beritelli, F., Casale, S., Cavallaro, A.: A robust voice activity detector for wireless communications using soft computing. IEEE Journal on Selected Areas in Communications, Special Issue on Signal Processing for Wireless Communications 16(9), 1818–1829 (1998)

    Google Scholar 

  2. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man & Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

  3. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  4. Honma, N., Abe, K., Sato, M., Takeda, H.: Adaptive evolution of holon networks by an autonomous decentralized method. Applied Mathematics and Computation 91(1), 43–61 (1998)

    Article  MathSciNet  Google Scholar 

  5. Huang, B., Gou, H., Liu, W., Xie, M.: A framework for virtual enterprise control with the holonic manufacturing paradigm. Computers in Industry 49(3), 299–310 (2002)

    Article  Google Scholar 

  6. International Phonetic Association home page (2005), http://www.arts.gla.ac.uk/IPA/index.html

  7. Jarvis, J., Rönnquist, R., McFarlane, D., Jain, L.: A team-based holonic approach to robotic assembly cell control. Journal of Network and Computer Applications 29(2–3), 160–176 (2005)

    Google Scholar 

  8. Koestler, A.: The Ghost in the Machine. Arkana Books (1971)

    Google Scholar 

  9. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)

    Article  Google Scholar 

  10. Massaro, D.: Perceiving Talking Faces: From Speech Perception to a Behavioral Principle. The MIT Press, Cambridge (1998)

    Google Scholar 

  11. Myers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell System Technical Journal 60(7), 1389–1409 (1981)

    Google Scholar 

  12. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. Wiley, Chichester (2004)

    Google Scholar 

  13. Pavón, J., Gómez-Sanz, J., Fernández-Caballero, A., Valencia-Jiménez, J.J.: Development of intelligent multisensor surveillance systems with agents. Robotics and Autonomous Systems 55(12), 892–903 (2007)

    Google Scholar 

  14. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  15. Russo, M.: FuGeNeSys: A genetic neural system for fuzzy modeling. IEEE Transactions on Fuzzy Systems 6(3), 373–388 (1998)

    Article  Google Scholar 

  16. Tsao, C., Gray, R.M.: An endpoint detector for LPC speech using residual error look-ahead for vector quantization applications. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 97–100 (1984)

    Google Scholar 

  17. Turing, A.M.: Computing Machinery and Intelligence. Mind 49, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  18. Valencia-Jiménez, J.J., Fernández-Caballero, A.: Holonic multi-agent systems to integrate independent multi-sensor platforms in complex surveillance. In: Proceedings of the IEEE International Conference on Advanced Video and Signal based Surveillance, p. 49 (2006)

    Google Scholar 

  19. Zadeh, L.: From computing with numbers, to computing with words: A new paradigm. International Journal on Applied Mathematics 12(3), 307–324 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Zadeh, L.: Fuzzy logic, neural networks and soft computing. Communications of the ACM 37(3), 77–84 (1994)

    Article  MathSciNet  Google Scholar 

  21. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decisión processes. IEEE Transactions on Systems, Man and Cybernetics, 28–44 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Geun Sik Jo Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valencia-Jiménez, J.J., Fernández-Caballero, A. (2008). Holonic Multi-agent System Model for Fuzzy Automatic Speech / Speaker Recognition. In: Nguyen, N.T., Jo, G.S., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2008. Lecture Notes in Computer Science(), vol 4953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78582-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78582-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78581-1

  • Online ISBN: 978-3-540-78582-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics