Skip to main content

Improving Metaheuristic Performance by Evolving a Variable Fitness Function

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4972))

Abstract

In this paper we study a complex real world workforce scheduling problem. We apply constructive search and variable neighbourhood search (VNS) metaheuristics and enhance these methods by using a variable fitness function. The variable fitness function (VFF) uses an evolutionary approach to evolve weights for each of the (multiple) objectives. The variable fitness function can potentially enhance any search based optimisation heuristic where multiple objectives can be defined through evolutionary changes in the search direction. We show that the VFF significantly improves performance of constructive and VNS approaches on training problems, and “learn” problem features which enhance the performance on unseen test problem instances.

This work was funded by EPSRC and @Road Ltd, a Trimble Company under an EPSRC CASE studentship, which was made available through and facilitated by the Smith Institute for Industrial Mathematics and System Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Remde, S., Cowling, P., Dahal, K., Colledge, N.: Evolution of Fitness Functions to Improve Heuristic Performance. In: Proceedings of Learning and Intelligent Optimization (LION) II. LNCS, Springer, Heidelberg (to be published, 2008)

    Google Scholar 

  2. Tsang, E., Voudouris, C.: Fast local search and guided local search and their application to British Telecom’s workforce scheduling problem. Operations Research Letters 20(3), 119–127 (1997)

    Article  MATH  Google Scholar 

  3. Cowling, P., Colledge, N., Dahal, K., Remde, S.: The Trade Off between Diversity and Quality for Multi-objective Workforce Scheduling. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 13–24. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Remde, S., Cowling, P., Dahal, K., Colledge, N.: Exact/Heuristic Hybrids using rVNS and Hyperheuristics for Workforce Scheduling. In: Evolutionary Computation in Combinatorial Optimization Proc. LNCS, Springer, Heidelberg (2007)

    Google Scholar 

  5. Hartmann, S.: Project Scheduling under Limited Resources: Model, methods and applications. Springer, Heidelberg (1999)

    Google Scholar 

  6. Vanlaarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job Shop Scheduling by Simulated Annealing. Operations Research 40(1), 113–125 (1992)

    Article  MathSciNet  Google Scholar 

  7. Toth, P., Vigo, D. (eds.): The Vehicle-Routing Problem. Siam, Philadelphia (2001)

    Google Scholar 

  8. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1991)

    Google Scholar 

  9. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Oper. Res. 130(3), 449–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operational Research 24(11), 1097–1100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Potgieter, G., Engelbrecht, A.P.: Genetic Algorithms for the Structure Optimisation of learned Polynomial Expressions. Applied Mathematics and Computation 186(2), 1441–1466 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shimojika, K., Fukuda, T., Hasehawa, Y.: Self-Tuning Fuzzy Modeling with adaptive membership function, rules, and hierarchical structure-based on Genetic Algorithm. Fuzzy Sets And Systems 71(3), 295–309 (1995)

    Article  Google Scholar 

  13. Reeves, C.R.: Genetic Algorithms and Combinatorial Optimization. In: Rayward-Smith, V.J. (ed.) Applications of Modern Heuristic Methods, Alfred Waller, Henley-on-Thames, pp. 111–125 (1995)

    Google Scholar 

  14. Yao, X.: Evolving artificial neural networks. Proceedings Of The IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  15. Valls, V., Ballestin, F., Quintanilla, S.: Justification and RCPSP: A technique that pays. European Journal of Operational Research 165(2) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jano van Hemert Carlos Cotta

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dahal, K., Remde, S., Cowling, P., Colledge, N. (2008). Improving Metaheuristic Performance by Evolving a Variable Fitness Function. In: van Hemert, J., Cotta, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2008. Lecture Notes in Computer Science, vol 4972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78604-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78604-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78603-0

  • Online ISBN: 978-3-540-78604-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics