Skip to main content

A Document-Centered Approach to a Natural Language Music Search Engine

  • Conference paper
Advances in Information Retrieval (ECIR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4956))

Included in the following conference series:

  • 2244 Accesses

Abstract

We propose a new approach to a music search engine that can be accessed via natural language queries. As with existing approaches, we try to gather as much contextual information as possible for individual pieces in a (possibly large) music collection by means of Web retrieval. While existing approaches use this textual information to construct representations of music pieces in a vector space model, in this paper, we propose a document-centered technique to retrieve music pieces relevant to arbitrary natural language queries. This technique improves the quality of the resulting document rankings substantially. We report on the current state of the research and discuss current limitations, as well as possible directions to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apache Lucene, http://lucene.apache.org

  2. Audioscrobbler, http://www.audioscrobbler.net

  3. Last.fm, http://www.last.fm

  4. Baumann, S., Klüter, A., Norlien, M.: Using natural language input and audio analysis for a human-oriented MIR system. In: Proc. 2nd WEDELMUSIC 2002 (2002)

    Google Scholar 

  5. Celma, O., Cano, P., Herrera, P.: Search Sounds: An audio crawler focused on weblogs. In: Proc. 7th ISMIR (2006)

    Google Scholar 

  6. Knees, P., Pohle, T., Schedl, M., Widmer, G.: A Music Search Engine Built upon Audio-based and Web-based Similarity Measures. In: Proc. 30th ACM SIGIR (2007)

    Google Scholar 

  7. Knees, P., Widmer, G.: Searching for Music Using Natural Language Queries and Relevance Feedback. In: Proc. 5th AMR (2007)

    Google Scholar 

  8. Mandel, M., Ellis, D.: Song-Level Features and Support Vector Machines for Music Classification. In: Proc. 6th ISMIR (2005)

    Google Scholar 

  9. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Towards Musical Query-by-Semantic-Description using the CAL500 Data Set. In: Proc. 30th ACM SIGIR (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Craig Macdonald Iadh Ounis Vassilis Plachouras Ian Ruthven Ryen W. White

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knees, P., Pohle, T., Schedl, M., Schnitzer, D., Seyerlehner, K. (2008). A Document-Centered Approach to a Natural Language Music Search Engine. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds) Advances in Information Retrieval. ECIR 2008. Lecture Notes in Computer Science, vol 4956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78646-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78646-7_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78645-0

  • Online ISBN: 978-3-540-78646-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics