Skip to main content

Detection of Quantitative Trait Associated Genes Using Cluster Analysis

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4973))

Abstract

Many efforts have been involved in association study of quantitative phenotypes and expressed genes. The key issue is how to efficiently identify phenotype-associated genes using appropriate methods. The limitations for the existing approaches are discussed. We propose a hierarchical mixture model in which the relationship between gene expressions and phenotypic values is described using orthogonal polynomials. Gene specific coefficient, which reflects the strength of association, is assumed to be sampled from a mixture of two normal distributions. The association status for a gene is determined based on which distribution the gene specific coefficient is sampled from. The statistical inferences are made via the posterior mean drawn from a Markov Chain Monte Carlo sample. The new method outperforms the existing methods in simulated study as well as the analysis of a mice data generated for obesity research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P.: Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments. Stat. Sinic. 12, 111–139 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Saban, M.R., Hellmich, H., Nguyen, N.B., Winston, J., Hammond, T.G., Saban, R.: Time course of lps- induced gene expression in a mouse model of genitourinary inflammation. Physiological Genomics 5, 147–160 (2001)

    Google Scholar 

  3. Blalock, E.M., Geddes, J.W., Chen, K.C., Porter, N.M., Markesbery, W.R., Landfield, P.W.: Incipient alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proceedings of the National Academy of Sciences of the United States of America 101, 2173–2178 (2004)

    Article  Google Scholar 

  4. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America 98, 5116–5121 (2001)

    Article  MATH  Google Scholar 

  5. Efron, B., Tibshirani, R., Storey, J.D., Tusher, V.: Empirical bayes analysis of a microarray experiment. J. Am. Stat. Assoc. 96, 1151–1160 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Newton, M.A., Noueiry, A., Sarkar, D., Ahlquist, P.: Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155–176 (2004)

    Article  MATH  Google Scholar 

  7. Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M., Haussler, D.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of the National Academy of Sciences of the United States of America 97, 262–267 (2000)

    Article  Google Scholar 

  8. Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126–136 (2001)

    Article  Google Scholar 

  9. Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzzo, W.L.: Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977–987 (2001)

    Article  Google Scholar 

  10. Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Statistica Sinica 12, 61–86 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Huang, D.S., Pan, W.: Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics 22, 1259–1268 (2006)

    Article  Google Scholar 

  12. Jia, Z., Xu, S.: Clustering expressed genes on the basis of their association with a quantitative phenotype. Genetical Research 86, 193–207 (2005)

    Article  Google Scholar 

  13. Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R., Brozell, A., Schadt, E.E., Drake, T.A., Lusis, A.J., Horvath, S.: Integrating genetic and network analysis to characterize genes related to mouse weight. Plos Genetics 2, 1182–1192 (2006)

    Article  Google Scholar 

  14. Qu, Y., Xu, S.H.: Quantitative trait associated microarray gene expression data analysis. Molecular Biology and Evolution 23, 1558–1573 (2006)

    Article  Google Scholar 

  15. Schwartz, G.: Estimating the dimensions of a model. Ann. Stat. 6, 461–464 (1978)

    Article  Google Scholar 

  16. Hayes, J.G.: Numerical methods for curve and surface fitting. J. Inst. Math. Appl. 10, 144–152 (1974)

    MathSciNet  Google Scholar 

  17. George, E.I., Mcculloch, R.E.: Variable selection via gibbs sampling. Journal of the American Statistical Association 88, 881–889 (1993)

    Article  Google Scholar 

  18. Raftery, A.E., Lewis, S.M.: One long run with diagnostics: Implementation strategies for markov chain monte carlo. Statistical Science 7, 493–497 (1992)

    Article  Google Scholar 

  19. Jia, Z., Xu, S.: Mapping quantitative trait loci for expression abundance. Genetics 176, 611–623 (2007)

    Article  Google Scholar 

  20. Lan, H., Chen, M., Flowers, J.B., Yandell, B.S., Stapleton, D.S., Mata, C.M., Mui, E.T., Flowers, M.T., Schueler, K.L., Manly, K.F., Williams, R.W., Kendziorski, C., Attie, A.D.: Combined expression trait correlations and expression quantitative trait locus mapping. Plos Genetics 2, e6 (2006)

    Google Scholar 

  21. Schadt, E.E., Monks, S.A., Drake, T.A., Lusis, A.J., Che, N., Colinayo, V., Ruff, T.G., Milligan, S.B., Lamb, J.R., Cavet, G., Linsley, P.S., Mao, M., Stoughton, R.B., Friend, S.H.: Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jia, Z., Tang, S., Mercola, D., Xu, S. (2008). Detection of Quantitative Trait Associated Genes Using Cluster Analysis. In: Marchiori, E., Moore, J.H. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2008. Lecture Notes in Computer Science, vol 4973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78757-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78757-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78756-3

  • Online ISBN: 978-3-540-78757-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics