Skip to main content

Optimizing Computed Tomographic Angiography Image Segmentation Using Fitness Based Partitioning

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2008)

Abstract

Computed Tomographic Angiography (CTA) has become a popular image modality for the evaluation of arteries and the detection of narrowings. For an objective and reproducible assessment of objects in CTA images, automated segmentation is very important. However, because of the complexity of CTA images it is not possible to find a single parameter setting that results in an optimal segmentation for each possible image of each possible patient. Therefore, we want to find optimal parameter settings for different CTA images. In this paper we investigate the use of Fitness Based Partitioning to find groups of images that require a similar parameter setting for the segmentation algorithm while at the same time evolving optimal parameter settings for these groups. The results show that Fitness Based Partitioning results in better image segmentation than the original default parameter solutions or a single parameter solution evolved for all images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bovenkamp, E., Eggermont, J., Li, R., Emmerich, M., Bäck, T., Dijkstra, J., Reiber, J.: Optimizing IVUS Lumen Segmentations using Evolutionary Algorithms. In: The 1st International Workshop on Computer Vision for IntraVascular and IntraCardiac Imaging, October 1–5, pp. 74–81 (2006)

    Google Scholar 

  2. Li, R., Emmerich, M., Eggermont, J., Bovenkamp, E., Bäck, T., Dijkstra, J., Reiber, J.: Mixed-Integer Optimization of Coronary Vessel Image Analysis using Evolution Strategies. In: Keijzer, M., et al. (eds.) Proceedings of the 8th annual conference on Genetic and Evolutionary Computation (GECCO), Seattle, WA, USA, pp. 1645–1652 (2006)

    Google Scholar 

  3. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  4. Vanneschi, L., Mauri, G., Valsecchi, A., Cagnoni, S.: Heterogeneous cooperative coevolution: strategies of integration between gp and ga. In: Proceedings of Genetic and Evolutionary Computation Conference, GECCO, Seattle, Washington, USA, July 8-12, pp. 361–368 (2006)

    Google Scholar 

  5. Roberts, M., Claridge, E.: Cooperative coevolution of image feature construction and object detection. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 902–911. Springer, Heidelberg (2004)

    Google Scholar 

  6. Li, R., Eggermont, J., Emmerich, M., Bovenkamp, E., Bäck, T., Dijkstra, J., Reiber, J.: Towards Dynamic Fitness Based Partitioning for IntraVascular UltraSound Image Analysis. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 388–395. Springer, Heidelberg (2007)

    Google Scholar 

  7. Marquering, H., Dijkstra, J., de Koning, P., Stoel, B., Reiber, J.: Towards quantitative analysis of coronary cta. Int. J. Cardiovasc Imaging 21(1), 73–84 (2005)

    Article  Google Scholar 

  8. Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-integer evolution strategy for chemical plant optimization with simulators. In: Parmee, I. (ed.) Evolutionary Design and Manufacture - Selected papers from ACDM, pp. 55–67. Springer, London (2000)

    Google Scholar 

  9. Schwefel, H.P.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. Wiley, New York (1995)

    Google Scholar 

  10. Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 139–148. Springer, Heidelberg (1994)

    Google Scholar 

  11. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  12. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: a general purpose evolutionary computation library. In: EA 2001, Evolution Artificielle, 5th International Conference in Evolutionary Algorithms, pp. 231–244 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mario Giacobini Anthony Brabazon Stefano Cagnoni Gianni A. Di Caro Rolf Drechsler Anikó Ekárt Anna Isabel Esparcia-Alcázar Muddassar Farooq Andreas Fink Jon McCormack Michael O’Neill Juan Romero Franz Rothlauf Giovanni Squillero A. Şima Uyar Shengxiang Yang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eggermont, J. et al. (2008). Optimizing Computed Tomographic Angiography Image Segmentation Using Fitness Based Partitioning. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2008. Lecture Notes in Computer Science, vol 4974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78761-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78761-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78760-0

  • Online ISBN: 978-3-540-78761-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics