
Type-Based Homeomorphic Embedding and Its
Applications to Online Partial Evaluation

Elvira Albert1, John Gallagher2, Miguel Gómez-Zamalloa1,
and Germán Puebla3

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CBIT, Roskilde University, DK-4000 Roskilde, Denmark

3 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. Homeomorphic Embedding (HEm) has proven to be very
powerful for supervising termination of computations, provided that such
computations are performed over a finite signature, i.e., the number of
constants and function symbols involved is finite. However, there are
situations, for example numeric computations, which involve an infinite
(or too large) signature, in which HEm does not guarantee termination.
Some extensions to HEm for the case of infinite signatures have been
proposed which guarantee termination, but they either do not provide
systematic means for generating such extensions or the extensions are
too simplistic and do not produce the expected results in practice. We
introduce Type-based Homeomorphic Embedding (TbHEm) as an exten-
sion of the standard, untyped HEm to deal with infinite signatures. In
the paper, we show how TbHEm can be used to improve the accuracy
of online partial evaluation. For this purpose, we propose an approach
to constructing suitable types for partial evaluation automatically based
on existing analysis tools for constraint logic programs. We also present
useful properties of types which allow us to take full advantage of Tb-
HEm in practice. Experimental results are reported which show that our
work improves the state of the practice of online partial evaluation.

1 Introduction

The homeomorphic embedding (HEm) relation [10,11,12] has become very pop-
ular to ensure online termination of symbolic transformation and specialization
methods and it is essential to obtain powerful optimizations, for instance, in the
context of online Partial Evaluation (PE) [9]. Intuitively, HEm is a structural
ordering under which an expression t1 is greater than, i.e., it embeds, another
expression t2, written as t2� t1, if t2 can be obtained from t1 by deleting some
parts, e.g., s(s(U + W)×(U+s(V))) embeds s(U× (U + V)). The HEm relation can
be used to guarantee termination because, provided the set of constants and
functors is finite, every infinite sequence of expressions t1, t2, . . . , contains at
least a pair of elements ti and tj with i < j s.t. ti� tj . Therefore, when it-
eratively computing a sequence t1, t2, . . . , tn, finiteness of the sequence can be
guaranteed by using HEm as a whistle. Whenever a new expression tn+1 is to

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 23–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

24 E. Albert et al.

be added to a finite sequence t1, . . . , tn, we first check whether tn+1 embeds any
of the expressions already in the sequence. If that is the case, we say that HEm
whistles, i.e., it has detected (potential) non-termination and the computation
has to be stopped. Otherwise, tn+1 can be safely added to the sequence and the
computation can proceed.

Two key features for the success of HEm as an approach for guaranteeing on-
line termination are i) in the case of finite sequences, it often allows sequences
to grow considerably large before the whistle blows, to the point that in a good
number of cases the full sequence can be computed without the whistle blow-
ing at all; ii) in the case of infinite sequences, it often identifies (potential)
non-termination quickly, and the whistle blows without unnecessarily further
expanding the sequence.

While HEm has been proved very powerful for symbolic computations, some
difficulties remain in the presence of infinite signatures, such as the numbers. In
the case of logic programs, infinite signatures appear as soon as certain Prolog
built-ins such is/2, functor/3 name/2, =../2, atom codes/2, etc. are used.
Some extensions to HEm over infinite signatures have been defined and used in
practice (e.g. [11,2]), but they are often too ad-hoc, i.e., they only allow constants
which appear explicitly in the program, regardless of which part of the program
(predicate, argument position) they appear. As the approach is purely syntactic,
it sometimes turns out to be too conservative (“whistling” too early) in practice,
breaking feature i) above; while it can also be too aggressive, thus also sometimes
breaking feature ii) above.

In this paper, we introduce the type-based homeomorphic embedding (TbHEm)
relation which by taking information about the behavior of the program into
account, provides more precise results in the presence of infinite signatures. In
a sense, whereas [11,2] take a simple syntactic approach to extending the HEm
relation, we propose a semantic approach for such extension. To achieve this,
our typed relation is defined on types structured in two parts: a finite component
and an infinite component. Intuitively, TbHEm allows expanding sequences as
long as, whenever we compare two terms of a given type, the actual symbols
which appear in such terms belong to the finite component of the type.

We illustrate the benefits of TbHEm in the context of online Partial Evaluation
(PE) [9]. In particular, we use a simplified interpreter for an imperative, stack-
based bytecode language written in Prolog whose specialization (if successful)
allows decompiling bytecode programs to Prolog. We show how to automatically
construct typings by relying on existing analysis techniques for the inference of
well-typings [5]. Moreover, we present the property of a type being of finite
signature (resp. infinite signature) which guarantees that all terms in the type
are built out of a finite (resp. infinite) number of constant and functor symbols.
We also outline how analysis of numeric bounds can be used to infer finite
signature properties of types. In the case of finite signature, we can safely apply
traditional HEm. We report on experimental results which compare TbHEm with
previous proposals and show the benefits of our approach for the specialization
of logic programs with infinite signatures.

Type-Based Homeomorphic Embedding 25

The rest of the paper is organized as follows. Sect. 2 recalls some basic notions
of PE, with special emphasis on the role of embedding. In Sect. 3, we review
existing proposals in specialization of interpreters. In Sect. 4, we introduce Tb-
HEm and prove its correctness. Sect. 5 proposes the use of well-typings as suitable
types for the application of TbHEm in online PE and reports some experiments.
Sect. 6 presents interesting properties of types to use TbHEm in practice, to-
gether with some experimental results. Finally, Sect. 7 discusses related work
and concludes.

2 Basics on Embedding in Partial Evaluation

We assume familiarity with the basic concepts of logic programming and partial
evaluation, as they are presented in e.g. [16,9]. We start by recalling the definition
of HEm, which can be found for instance in Leuschel’s work [14].

Definition 1 (�). Given two atoms A = p(t1, . . . , tn) and B = p(s1, . . . , sn),
we say that B embeds A, written A � B, if ti � si for all i s.t. 1 ≤ i ≤ n. The
embedding relation over terms, also written �, is defined by the following rules:

1. Y � X for all variables X, Y .
2. s� f(t1, . . . , tn) if s � ti for some i.
3. f(s1, . . . , sn)� f(t1, . . . , tn) if si � ti for all i, 1 ≤ i ≤ n.

We now explain the role that HEm plays in online PE (see e.g. [9,12,14]), which
is a semantics-based program transformation technique which specializes a pro-
gram w.r.t. given input data, hence, it is often called program specialization.
Essentially, partial evaluators are non-standard interpreters which evaluate goals
as long as termination is guaranteed and specialization is considered profitable.
Given a program P and an atom S, partial evaluation produces a new program
PS which is a specialization of P for S. In logic programming, the underlying
technique is to construct (possibly) incomplete SLD trees for the set of atoms to
be specialized. In an incomplete tree, it is possible to choose not to further un-
fold a goal. Therefore, the tree may contain three kinds of leaves: failure nodes,
success nodes (which contain the empty goal), and non-empty goals which are
not further unfolded. The latter are required in order to guarantee termination
of the partial evaluation process, since the SLD being built may be infinite. Even
if the SLD trees for fully instantiated initial atoms (as regards the input argu-
ments) are finite, the SLD trees produced for partially instantiated initial atoms
may be infinite. This is because the SLD for partially instantiated atoms can
have (infinitely many) more branches than the actual SLD tree at run-time.

HEm in local control. The role of local control is to determine how to construct
the (incomplete) SLD trees. In particular, the unfolding rule decides, for each
resolvent, whether to stop unfolding or to continue unfolding it and, if so, which
atom to select from the resolvent. Unfolding is continued only if termination
is not endangered and specialization is considered profitable. Therefore, it is

26 E. Albert et al.

desirable to have a mechanism for guaranteeing termination which whistles as
late as possible. State of the art local control rules based on HEm do not check for
embedding against all previously selected atoms but rather only against those
in its sequence of covering ancestors (see e.g., [18]). This increases both the
efficiency of the checking and whistling later.

HEm in global control. Partial evaluators need to compute SLD-trees for a num-
ber of atoms in order to ensure that all atoms which appear in non-failing leaves
of incomplete SLD trees are “covered” by the root of some tree (this is known as
the closedness condition of partial evaluation [15]). The role of the global control
is to ensure that we do not try to compute SLD trees for an infinite number of
atoms. The usual way of achieving this is by applying an abstraction operator
which performs “generalizations” on the atoms for which SLD trees are to be
built. HEm can also be used at the global control level in order to decide when to
generalize (i.e., to apply the most specific generalization) before proceeding to
build SLD trees. Basically, for each new atom A, global control checks whether
A is larger than (i.e., it embeds) any of the atoms in the set Ti (which contains
the atoms in the roots of the partial trees which have already been built). If A
does not embed any atom in Ti, it is added to the set; otherwise, A is generalized
into msg(A, A′), where A′ ∈ Ti and A′�A. At the global control level, HEm can
be combined with other techniques such as global trees, characteristic trees, trace
terms, etc. See e.g. [12] and its references.

Partial evaluation and Code Generation. As discussed above, the global control
returns a set of atoms T . Finally, a partial evaluation of P w.r.t. S can then
be systematically extracted from the set T . As notation, we refer to each root-
to-leaf path in an SLD tree as derivation. The notion of resultant is used to
generate a program rule associated with each non-failing derivation in an SLD
tree. In particular, given a derivation for P ∪ {A} with A ∈ T ending in B and
θ the composition of the mgus in the derivation steps, then the rule Aθ ← B is
called the resultant of the derivation. A partial evaluation is then defined as the
union of the sets of resultants associated to the SLD trees for all atoms in T .

3 Embedding with Infinite Signatures: Motivating
Example

In Fig. 1 we show a fragment of a simplified imperative bytecode interpreter
implemented in Prolog. If the partial evaluator is powerful enough, given a byte-
code program we can obtain a decompiled version of it in Prolog (see e.g. [1]
for an object-oriented stack-based interpreter). For brevity, we omit the code of
some predicates like build init state/2 (whose purpose is explained below)
and localVar update/4 which simply updates the value of a local variable. We
only show the definition of step/3 for a reduced set of instructions. The byte-
code to be decompiled is represented as a set of facts bytecode(PC,Inst)where
PC contains a program counter and Inst the corresponding bytecode instruc-
tion. A state is of the form st(PC,OStack,LocalV) where OStack represents

Type-Based Homeomorphic Embedding 27

main(InArgs,Top) :-
build_init_state(InArgs,S0),
execute(S0,st(_,[Top|_],_)).

execute(S,S):-
S = st(PC,_,_),
bytecode(PC,return).

execute(S1,Sf) :-
S1 = st(PC,_,_),
bytecode(PC,Inst),
step(Inst,S1,S2),
execute(S2,Sf).

step(const(_T,Z),st(PC,S,L),S2) :-
PCp is PC + 1,
S2 = st(PCp,[Z|S],L).

step(istore(X),st(PC,[I|S],L),S2) :-
PCp is PC + 1,
localVar_update(L,X,I,Lb),
S2 = st(PCp,S,Lb).

step(goto(O),st(PC,S,L),S2) :-
PCp is PC+O,
S2 = st(PCp,S,L).

....

Fig. 1. Fragment of simplified bytecode interpreter

the operand stack and LocalV the list of local variables. The predicate main/2,
given the input method arguments InArgs, first builds the initial state by means
of predicate build init state/2 and then calls predicate execute/2. In turn,
execute/2 first calls predicate step/3, which produces S2, the state after execut-
ing the corresponding bytecode, and then calls predicate execute/2 recursively
with S2 until we reach a return instruction.

Consider the count method which appears in the left hand side of Fig. 2,
represented as a set of facts. For clarity of the presentation, on the right hand
side of Fig. 2 we show a Java source program which can be compiled into the
corresponding bytecode. However, it is important to note that the decompilation
is performed directly from the bytecode and that the decompiler does not have
access to the source. It can be seen that count receives an integer and executes
a loop where a counter initialized to “0” (in bytecodes 0 and 1) is incremented
by one at each iteration (bytecode 5) until the counter reaches the value of the
input parameter (checking the condition comprises bytecodes 2, 3 and 4). The
method returns the value of the counter in bytecodes 7 and 8. For decompiling
the count method, we partially evaluate the interpreter w.r.t. the bytecode facts
which appear to the left of the figure by specializing the atom: main(N,I), where
N is the input parameter and I represents the return value (i.e., the top of the
stack at the end of the computation).

In Figure 3, we depict (a reduced version of) one of the SLD trees that leads
to an effective decompilation of our running example and that we will refer to
in the next sections. For simplicity, apart from the entry atom main/2, we only
show atoms for execute/2, as it is the only recursive predicate in the program.
Thus, each arrow in the tree involves the application of several unfolding steps.
Note that some of the statements within the body of each step operation can
remain residual when they involve data which is not known at specialization
time. The computation rule used in the unfolding operator is able to residualize
calls which are not sufficiently instantiated and select non-leftmost atoms in a
safe way [3], in particular, further calls to execute can be selected. We represent
such residual calls as labels in the arrows of the tree.

28 E. Albert et al.

bytecode(0,const(int,0)).
bytecode(1,istore(1)).
bytecode(2,iload(1)).
bytecode(3,iload(0)).
bytecode(4,if_icmp(geInt,3)).
bytecode(5,iinc(1,1)).
bytecode(6,goto(-4)).
bytecode(7,iload(1)).
bytecode(8,return).

static int count(int n){
int i = 0;
while (i < n)
i++;

return i;
}

Fig. 2. Object program for working example

main(N, I)

��
execute(st(0, [], [N, 0]), Sf)

��
execute(st(1, [0], [N, 0]), Sf)

��� � � � � � � � � � � � ��
�

�
�� � � � � � � � � � � � �

execute(st(2, [], [N, 0]),Sf)(1)

��
execute(st(4, [N, 0], [N, 0]), Sf)

{0≥N}��������� {0<N}���������

execute(st(8, [0], [N, 0]), Sf)
{I/0}��

execute(st(6, [], [N, 1]), Sf)

��
true

� � � � � � � � � � � � ��
�

�
�

� � � � � � � � � � � � �
execute(st(2, [], [N,1]), Sf)(2)

(1) �T (2), (1) ��∗
S (2)��

∞ (with �)

main(N,0) :- 0>=N.
main(N,I) :- 0<N,

sp execute(N,1,I).

sp execute(N,I,I) :- I>=N.
sp execute(N,A,I) :- A<N, A’ is A+1,

sp execute(N,A’,I).

Fig. 3. Partial unfolding SLD tree and residual code of working example

3.1 Using the Original Homeomorphic Embedding

Let us first consider an online partial evaluator (which is able to accurately
handle built-in predicates and to safely perform non-leftmost and) which uses
HEm to control termination both at the local and global control levels. As
it can be seen in the figure, the PC value “2” corresponds to the loop en-
try. By applying HEm, the evaluation contains a subsequence of atoms of the
form: execute(st(2, [], [N, 0]), Sf), execute(st(2, [], [N, 1]), Sf), execute(st(2, [],
[N, 2]), Sf), . . . marked within dashed frames in the figure, which correspond to
consecutive iterations of the loop in which the control returns to the loop head
(PC value 2 in the first position of the state) with a value for the loop counter

Type-Based Homeomorphic Embedding 29

(local variable at the second position in the resulting state) increased by one.
This sequence can grow infinitely, as the HEm does not flag it as potentially
dangerous, which is marked by ∞ (with �) in the figure. This is because the
interpreter uses Prolog’s arithmetic (i.e., the is/2 predicate), which breaks the
finite signature property featured by pure logic programs.

In order to get a quality decompilation, we need to filter out the value of the
counter (local variable 1) but not that of the PC. As shown in the figure, this re-
quires stopping the derivation when we hit the atom execute(st(2, [], [N, 1]), Sf)
(marked as (1)�T (2)) and generalize it w.r.t. the above atom within a dashed
frame, resulting in execute(st(2, [], [N, X]), Sf).

3.2 Recovering Termination: Embedding with Number Filtering

In programs which contain Prolog arithmetic but do not generate an infinite
number of functors via functor/3, =../2, etc., a relatively straightforward
solution in order to recover termination is to use the �num relation, which is an
adaptation of HEm which filters out numeric values, i.e., any number embeds any
other number. The atom execute(st(2, [], [N, 1]), Sf) embeds execute(st(2, [],
[N, 0]), Sf) under �num and therefore we avoid non-termination. Unfortunately,
this modification to HEm, is far too conservative, and leads to excessive preci-
sion loss. For instance, in the specialization of main(N, I), the first two atoms
for execute/2 are execute(st(0, [], [N, 0]), Sf) and execute(st(1, [0], [N, 0]), Sf).
By using �num, the whistle blows at this point and unfolding has to stop.
Furthermore, the latter atom is generalized at the global control level into
execute(st(X, Y, [N, 0]), Sf) before proceeding with the specialization. This turns
out not to be acceptable for the specialization of our interpreter, since we lose
track of which the next instruction to execute is—which prevents us from elim-
inating the interpretation layer—and in many cases the residual program ends
up containing the whole original interpreter.

3.3 Increasing Accuracy: Static Symbols in the Program

A simple syntactic way of increasing the accuracy while preserving termination,
as proposed in [11], consists in considering two sets of symbols: those which appear
explicitly in the program and goal, which is obviously finite, and another infinite
set which contains all other symbols. In the following, this relation is denoted as
�∗

S . When comparing two terms we keep those symbols which belong to the finite
set and filter out all other ones. Under this relation, the atom execute(st(1, [0],
[N, 0]), Sf) does not embed the atom execute(st(0, [], [N, 0]), Sf) in the figure, as
the numbers 0 and 1 are different static symbols which occur in the program.
Hence, we are not forced to generalize them and we can keep the PC value.

Unfortunately, the �∗
S relation turns out not to be optimal in our case either

since execute(st(2, [], [N, 1]), Sf) does not embed execute(st(2, [], [N, 0]), Sf).
This means that unfolding proceeds with a second iteration of the loop. The
process is guaranteed to terminate, we will unfold at most as many iterations of
the loop as distinct numbers appear in the program. However, we are not able to

30 E. Albert et al.

achieve the quality decompilation which appears at the bottom of Figure 3. For
obtaining such good decompilation, we need to generalize the loop counter, i.e.,
the atom execute(st(2, [], [N, 1]), Sf) has to embed execute(st(2, [], [N, 0]), Sf).
Intuitively, the reason why this relation does not behave optimally is because
the fact that many symbols appear explicitly in the program for one argument
(in our case the PC counter) should somehow not affect the set of symbols which
we should consider as static for other arguments (the list of local variables).

Note that the use of characteristic trees [13] to control the degree of poly-
variance does not lead to an optimal decompilation in this example either. The
reason is that characteristic trees concern only global and not local control.
Therefore, as already mentioned above, they do not stop the local derivation
which may perform as many unrollings of the loop as different values for the
loop counter there are in the program. Once the local control stops this unfold-
ing process, the value of the counter will be generalized by the global control.
However, the characteristic tree of this generalized term is clearly not equivalent
to the one of the previous unrolling for the different values in the counter. There-
fore, the decompilation of the loop body for the static values remains residual
in the specialized code as well.

4 Type-Based Homeomorphic Embedding

In the presence of infinite signatures, a general method of defining homeomor-
phic embedding relations exists; an extended homeomorphic embedding relation
is defined in [11] based on previous results by Kruskal [10] and by Dershowitz
[6]. This solution defines a family of embedding relations, where a subsidiary
ordering on function symbols plays an essential role. However, we argue that
this does not really solve the practical problem of finding an effective embedding
relation, since there is no automated mechanism for finding the “right” ordering
relation on the function symbols in the signature.

In this section, we propose typed-based homeomorphic embedding (TbHEm for
short), a relation which improves HEm by making use of additional information
provided in the form of types. We outline how this approach can be seen as a
way of generating instances of extended HEm as defined by Leuschel, including
the possibility of taking into account the program semantics. The types required
for guiding TbHEm can be provided manually or, interestingly, be automatically
inferred by program analysis, as we will see in Section 5.

4.1 Types: Preliminaries and Notation

In the following, let P be a program and ΣP be a (possibly infinite) signature
including the functions and constants appearing in P and goals for P as well as
in computations of P . We adopt the syntax of Mercury [20] for type definitions.
Type expressions (types), elements of T , are constructed from an infinite set of
type variables (parameters) VT and an alphabet of ranked type symbols ΣT ;
these are disjoint from the set of variables V and the alphabet of functors ΣP

of a given program P respectively.

Type-Based Homeomorphic Embedding 31

Definition 2 (type definition). A type rule for a type symbol h/n ∈ ΣT is of
the form h(T̄) −→ f1(τ̄1); . . . ; fk(τ̄k); . . . (k ≥ 1) where T̄ is a n-tuple of distinct
type variables, f1, . . . , fk, . . . are distinct function symbols from ΣP , τ̄i (i ≥ 1)
are tuples of corresponding arity from T , and type variables in the right hand
side, if any, are from T̄ (a condition known as transparency [17,8]). A type
definition is a finite set of type rules where no two rules contain the same type
symbol on the left hand side, and there is a rule for each type symbol occurring
in the type rules.

We write t : τ to mean that term t is of type τ . As in Mercury [20], a function
symbol can occur in several type rules. In the definition above we allow type
rules containing an infinite number of cases. Thus, standard infinite types such
as integer are permitted, defined by a rule with an infinite number of cases
containing the numeric constants. In order to define TbHEm we introduce some
extra annotation into type rules. We consider the right hand side of each type
rule to consist of two disjoint components, each possibly empty. More precisely,
we will structure a type rule as h(T̄) −→ F ; I, where the union F ∪I are the cases
in the type rule, F ∪ I is non-empty, F is either empty or finite and I is either
empty or infinite. We say that a type τ ∈ T is of infinite component if I is non-
empty in the rule defining τ . Otherwise it is said to be of finite component. Note
that for types of infinite component there are infinitely many ways of splitting
them into type rules; for example nat −→ F ; I where F = ∅ and I = N, or
F = {0, 1, 2} and I = N \ {0, 1, 2}, etc.

A predicate signature for an n-ary predicate p is of the form p(τ̄) and de-
clares a type τi ∈ T for each argument of the predicate p/n. Programs are
assumed to be well-typed in the usual sense, namely that every atom and term
in a clause can be assigned types consistent with the type declarations such that
the type assigned to each head atom is a variant of the signature for its predicate,
the types of the body atoms are instances of the corresponding signatures, and
multiple occurrences of the same variable in the clause are assigned the same
type. Furthermore, we disallow polymorphic recursion; body atoms for recursive
predicates are assigned a type that is a variant of the signature. The relevant
consequences of well-typing for our purpose are firstly that a well-typed program
and goal generate only well-typed atoms in computations and secondly that only
a finite number of types arise during a computation. An infinite set of different
types such as h(T), h(h(T)), h(h(h(T))), . . . cannot arise in a computation, due
to the absence of polymorphic recursion.

4.2 Type-Based Homeomorphic Embedding

We now define TbHEm (�T). It follows closely the definition of the extended
HEm relation defined in [11] on untyped terms; here we define a relation on
typed terms. As in the definition in [11], two subsidiary relations
F and
S

are needed. The first,
F , is a relation on function symbols paired with their
associated types, and it refers to the infinite component of type rules described
above.

32 E. Albert et al.

Definition 3. Let
F be the following relation on the set of pairs ΣP × T .
(f1, τ1)
F (f2, τ2) iff (1) the rules defining τi are of form hi(V̄i) −→ Fi; Ii, for
i = 1, 2 and (2) either f1 = f2 ∧ τ1 = τ2 or f2 is in the infinite component I2 of
the rule for τ2.

For instance, given τ −→ F ; I with F = {1, 2} and I = N \ {1, 2} then (1, τ) �
F

(2, τ) and (1, τ)
F (5, τ). The other relation,
S , is a relation on sequences of
typed terms, and for our purposes here we can take it to be true for all pairs of
sequences of typed terms. In general this relation can be defined to allow more
refined treatment of associative operators, among other things; as noted in [11],
whether ∧(a, b, c) is embedded in ∧(a, b, c, d) depends on the nested structure of
the expressions, if ∧ is taken as a binary functor. Though we do not use it here,
we include the relation
S in the following definition for uniformity with [11],
so that our notion of typed embedding becomes an instance of the extended
homeomorphic embedded defined there.

Definition 4 (�T). Given two typed atoms A = p(t1, . . . , tn) and B = p(s1,
. . . , sn), with predicate signature p(τ1, . . . , τn), we say that B embeds A, written
A �T B, if ti : τi �T si : τi for all i s.t. 1 ≤ i ≤ n. The embedding relation over
typed terms, also written �T , is defined by the following rules:

1. Y :τY �T X:τX for all variables X, Y .
2. s :τ �T f(t1, . . . , tn) :τ ′ if s :τ �T ti :τ ′

i for some i, where τ ′
1, . . . , τ

′
n are the

respective types of t1, . . . , tn.
3. f(s1, . . . , sn) :τ �T g(t1, . . . , tm) :τ ′ if

(a) (f, τ)
F (g, τ ′),
(b) (s1 :τ1, . . . , sn :τn)
S (t1 :τ ′

1, . . . , tm :τ ′
m), and

(c) ∃i1, . . . , in such that 1 ≤ i1 < · · · < in ≤ m and ∀j ∈ {1, . . . , n},
sj :τj �T tij :τ ′

ij
,

where τ1, . . . , τn, τ ′
1, . . . , τ

′
m are the respective types of s1, . . . sn, t1, . . . , tm.

Rule 3 of the definition specifies that embedding can occur between terms with
different function symbols, where the function symbol of the “larger” term using
the
F relation is from the I component of its type. However, as long as we
compare distinct terms from an infinite type and remain within the finite com-
ponent F of the type, no embedding (using rule 3) occurs since the condition
(f, τ1)
F (g, τ2) does not hold. For instance, consider the following predicate
signature and type definition, p(τ) and τ −→ F ; I. We have that p(1) �T p(2)
if F = ∅ and I = N. However, p(1) ��T p(2) if F = {0, 1, 2} and I = N \ {0, 1, 2}.

Proposition 1. Given a program P that is well-typed with respect to a type
definition and set of signatures, there is no infinite sequence of well-typed atoms
A1, A2, . . . in a computation for P such that for all i, j where i < j, Ai ��T Aj .

Proof. First note that, by the assumption that polymorphic recursion is disal-
lowed, only a finite number of types (up to renaming of type variables) arises in a
computation. The proposition follows from the fact that is a �T well quasi order
(wqo) on typed atoms over a finite set of types. A binary relation ≤: D × D is a

Type-Based Homeomorphic Embedding 33

wqo if (i) it is reflexive and transitive, and (ii) for all infinite sequences d0, d1, . . .
of elements of D, ∃i < j such that di ≤ dj . By Theorem 4 from [11], this in turn
follows if both
F and
s are wqos on their respective domains, which we now
prove.

The proof that
S is a wqo is trivial. For
F , it can easily be verified that
the relation is reflexive and transitive. To prove the wqo property (ii) assume
that there is an infinite sequence of pairs from ΣP × T , (f0, τ0), (f1, τ1),
First assume there is only a finite number of function symbols occurring in the
sequence; in this case, since there is also a finite number of types, there must
exist i and j, i < j, such that fi = fj ∧ τi = τj and hence (fi, τi)
F (fj , τj).
Secondly, assume that there is an infinite set of function symbols occurring in
the sequence; since the number of types is finite there must exist some j > 0,
such that fj is in the infinite component of the type rule for τj , in which case
(fi, τi)
F (fj , τj) for all i < j. Hence,
F is a wqo.

Proposition 1 ensures that partial evaluation using TbHEm terminates. The idea
of using a typed homeomorphic embedding generalises an idea sketched in [11] to
build an extended homeomorphic embedding based on a distinction between the
finite number of symbols actually occurring in the program and goal (the static
symbols), and the rest (the dynamic symbols). This could be reconstructed as
a TbHEm using a single type rule term −→ F ; I where F contains cases of the
form f(term,, term) where f is a static symbol, and I contains the infinite
number of cases where f is not static.The predicate signatures would allocate
the type term to all arguments. As discussed in Section 3.3, that approach lacks
control over the different contexts in which static symbols occur in the program.
Sometimes a static symbol should block embedding but other times it should
not.

5 Automatic Inference of Well-Typings

In this section, we outline and experimentally evaluate an approach which, given
an untyped program and a goal or set of goals, automatically infers suitable
types to be used in online partial evaluation in combination with TbHEm. The
approach is based on existing analysis tools for constraint logic programs.

We note first that the problem does not allow a precise, computable solution.
Determining the exact set of symbols that can appear at run-time at a specific
program point, and in particular determining whether the set is finite, is closely
related to termination detection and is thus undecidable. However, the better
the derived types are, the more aggressive partial evaluation can be without
risking non-termination. If the derived types have finite components that are
too small, then over-generalization is likely to result; if they are too large, then
specialization might be over-aggressive, producing unnecessary versions.

A procedure for constructing a monomorphic well-typing of an arbitrary logic
program was described by Bruynooghe et al. [5]1. The procedure scales well

1 Available on-line at http://saft.ruc.dk/Tattoo/

34 E. Albert et al.

(roughly linear in program size) and is robust, in that every program has a
well-typing, and the procedure works with partial programs (modules). We first
apply this procedure to illustrate the use of well-typings in the context of our
running example and, then, we perform an experimental evaluation to assess the
gains that we achieve in the specialization of interpreters by using well-typings
in combination with TbHEm.

5.1 Well-Typings for Working Example

In the original type inference procedure, an externally defined predicate such as
is/2 is treated as if defined by a clause X is Y :- true and is thus implicitly
assumed not to generate any symbols not occurring elsewhere in the program.
In deriving types for partial evaluation, we provide a type for such built-ins in
the form of a dummy additional “fact” for is/2, namely num is num :- true.
The constant num (assumed not to occur elsewhere in the program) will thus
propagate during type inference into those types that unify with the types of the
is predicate arguments. In the resulting inferred types, we interpret occurrences
of the constant num as being an abbreviation for an infinite set of cases.

Example 1. A type is inferred for the interpreter sketched in Figure 1, together
with the particular bytecode program of Fig. 2. Note that the program counter
is sometimes computed in the interpreter using the predicate is/2 as an offset
from the current program counter value and hence its type is in principle any
number. When the extra fact num is num :- true is added to the program,
the inferred type τPC for the program counter argument PC is as follows.

τPC --> -4; 0; 1; 2; 3; 4; 5; 6; 7; 8; num

Type τPC can be naturally interpreted as consisting of a finite part (the named
constants) and an infinite part (the numbers other than the named constants).
In other words, the partition F of the rule is {−4, 0, 1, 2, . . . , 8} and I = num\F .
Using the rule structured in this way, TbHEm ensures that the program counter
is never abstracted away during partial evaluation, so long as its value re-
mains in the expected range (the named constants). The atom execute(st(1, [0],
[N, 0]), Sf) does not embed execute(st(0, [], [N, 0]), Sf) by using the type defi-
nition above, thus, the derivation can proceed. This avoids the need for gen-
eralizing the PC what would prevent us from having a quality specialization
(decompilation) as explained in Sect. 2. The derivation will either eventually end
or the PC value will be repeated due to a backwards jump in the code (loops).
In this case, �T will flag the relevant atom as dangerous, e.g., execute(st(2,
[], [N, 0]), Sf) �T execute(st(2, [], [N, 1]), Sf), as can be seen in Fig. 3. If, however,
a different value arose, perhaps due to an addressing error, the infinite part of
the type rule num is encountered and embedding (followed by generalization of
the program counter argument) would take place.

The decompiled program that we obtain using the inferred well-typings and
combined with TbHEm is shown at the bottom of Fig. 3. We can observe that
the decompilation is optimal in the sense that the interpretation layer has been
completely removed and there is no superfluous residual code. Note that a more

Type-Based Homeomorphic Embedding 35

sophisticated analysis could infer that τPC becomes of finite component, i.e., I = ∅
by taking F = {−4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This can be done by com-
puting all combinations of bytecode indeces and offsets present in the program. In
fact, F = {0, 1, 2, 3, 4, 5, 6, 7, 8} is also a correct finite component. Though this in-
formation indicates that τPC is of finite signature (see Section 6 below), the quality
of the decompiled program does not require this extra accuracy.

5.2 Experimental Results

We have implemented the proposed TbHEm embedding relation within the par-
tial evaluator available in CiaoPP [19] and combined it with the results obtained
from the well-typing analyzer in [5]. Table 1 shows the practical benefits that we
can obtain in the context of the specialization of interpreters. Each row in the
table corresponds to the specialization of a bytecode interpreter w.r.t. different
bytecode programs. Counter corresponds to the program presented in Fig. 2.
We use a set of classical iterative algorithms as additional benchmarks: Exp,
Gcd and Fib compute respectively the exponential, greatest-common-divisor
and Fibonacci, and ExpAlt corresponds to a different implementation of the
exponential. The last two benchmarks, LinSearch and BinSearch, compute
respectively the classical linear and binary searches over integer arrays. There-
fore, to handle them, we use an extended version of our bytecode interpreter
which handles integer array manipulation. Thus, it includes a heap in the state
as well as the bytecode instructions required to manipulate arrays. We have ex-
perimented as well extending the interpreter with more advanced features such
as exception handling, object orientation, etc. We believe that the results ob-
tained are generalizable to interpreters which manipulates numbers in general,
and in particular to low-level language interpreters.

For each benchmark, we study the behavior of �T w.r.t. �, �num and �∗
S

by measuring two aspects which are crucial in the specialization of interpreters,
the specialization time and the residual program size. Both aspects are directly
related to the quality of the decompilation. Then, from left to right, the first two
columns, Name and Size, show the name of the benchmark and the size (in
KBytes) of the Prolog representation of the bytecode program. The following
9 columns show specialization times (in seconds) and residual program sizes
(in KBytes) for the different strategies �, �num, �∗

S and �T . We write “-”
when the specialization does not terminate. Note that, in the group of columns
corresponding to �T , we have an additional column Twt which shows the time
taken by the well-typing analysis which should be added to the specialization
time in order to obtain a proper evaluation of �T . It should be noted also that
the usage of �∗

S would require a preprocessing time currently not being taken
into account which should be no more than the times in Twt. Since we do not
have an implementation of �∗

S the results obtained for it have been obtained
using the TbHEm writing by hand the corresponding types. Finally, the last two
columns show the gains (in terms of time and size) of the embedding relation
�T w.r.t. �num (in column T/S(�num)) and �∗

S (in column T/S(�∗
S)). The

gain is computed as Old-Cost/New-Cost. As we can observe in the table, �T

36 E. Albert et al.

Table 1. Measuring the effects of �T with the bytecode interpreter

Benchmark � �num �∗
S �T Gains

Name Size Tm Size Tm Size Tm Size Twt Tm Size T/S(�num) T/S(�∗
S)

Counter 0.27 - - 0.12 1.79 0.60 1.26 0.03 0.09 0.28 1.4/6.3 6.7/4.4
Exp 0.39 0.14 0.50 0.24 5.51 0.14 0.50 0.03 0.14 0.50 1.7/11.0 1.0/1.0
Gcd 0.35 0.13 0.38 0.23 4.80 0.14 0.38 0.03 0.11 0.29 2.2/16.3 1.4/1.3
ExpAlt 0.44 - - 0.26 6.13 3.75 4.50 0.03 0.13 0.34 2.0/17.8 29.0/13.1
Fib 0.52 - - 0.49 10.72 0.99 1.41 0.03 0.15 0.51 3.2/21.2 6.6/2.8
LinSearch 0.70 - - 0.54 13.69 3.99 9.04 0.04 0.25 1.70 2.1/8.1 15.7/5.3
BinSearch 2.00 3.14 9.26 5.05 112.50 3.20 9.26 0.04 1.59 5.51 3.2/20.4 2.0/1.7

guarantees termination and behaves significantly better than �num and �∗
S both

in time and size. Furthermore, �T behaves as well as � in the examples in which
� terminates, even after adding the additional cost taken by the well-typing
analysis. An important observation as regards the gains w.r.t. �∗

S is that for some
benchmarks such gains are large while for others they are almost insignificant.
The reason for this lack of improvement is that in the corresponding atoms, the
local variables within the state are not instantiated to concrete values almost
from the beginning. Therefore, the over-specialization problem of �∗

S pointed in
Sect. 3.3 is not exposed. In fact, note that these cases correspond precisely to
the cases where � terminates (due to the same reason).

6 Type-Based Homeomorphic Embedding in Practice

An important observation is that, in order to take full advantage of TbHEm in
practice, it is not always necessary to know the actual type definitions, but only
sufficient information for the relations
F and
S proposed in Sect. 4.2 to be
well defined. In particular it suffices to know whether the infinite component
of type rules is (transitively) empty or not. Moreover, it would be desirable to
define a condition on types specifying that a type and all the types on which
it depends are defined over a finite signature. In this case, we can safely revert
to the simpler HEm applied directly to terms of such types. In the following we
define such a condition.

Definition 5 (finite signature). Given a type τ defined by a type rule τ −→
F ; ∅ we say that τ is of finite signature, denoted f sig(τ), iff F = {f1(τ11,
. . . , τ1k1), . . . , fn(τn1, . . . , τnkn)} and all types τ11, . . . , τnkn are of finite
signature.

Hence, if a type τ is of finite signature the (possibly infinite) set of terms of type
τ contains only a finite set of functors. As the following Proposition implies, we
can then use � instead of �T when comparing terms in the context of finite
signatures.

Proposition 2. Given two typed terms t1 : τ1 and t2 : τ2, if f sig(τ2) holds then
t1 :τ1 �T t2 :τ2 ⇔ t1 � t2.

Type-Based Homeomorphic Embedding 37

In the following, for every type τ for which f sig(τ) holds, we simply write f sig
instead of the particular type. We now propose an extension to the definition of
�T to consider f sig types. This is done simply by adding the following rule to
Def. 4: 4. s :τ1 �T t : f sig if s � t.

In order to put these ideas into practice it is convenient to also have the type
i sig which is assigned to an argument when we cannot guarantee it is of finite
signature and we do not have further information available about its type. Note
that we are assuming a scenario where infinite signatures can include functors
as well as numbers.

Definition 6 (i sig). The type i sig is defined by the following type rule: i sig −→
∅; I where I = {f1(τ11, . . . , τ1k1), . . . , fn(τn1, . . . , τnkn), . . .} and fi are all possi-
ble functors and all types τ11, . . . , τnkn are i sig.

Note that since every case of the type rule belongs to the infinite component
then s : τ �T t : i sig will always hold (as
F holds for every s, τ and t). Hence,
termination is trivially guaranteed for terms of type i sig. In practice, in programs
with infinite signatures, unless the user (or an automatic analysis) explicitly
writes more concrete type declarations, a default typing will be assumed such
that all predicates p/n of a program have the predicate signature p(τ1, . . . , τn)
with τi = i sig, (0 ≤ i ≤ n). Then, more concrete declarations are allowed both
by declaring particular types and signatures (always preserving the well-typing
assumption, see Sect. 4) or by using the special type f sig.

Example 2. Consider again the interpreter in our motivating example. Though
it is natural to use integer numbers to represent program counters, the set of
instructions is finite in any bytecode program. Therefore the PC can be safely
declared as f sig. Thus we may write the following predicate signature and type
definition:

execute(τst, τst).
τst −→ {st(f sig, i sig, i sig)}; ∅.

With this type declaration we are able to obtain the same results as in Sect 5.1 in
a more efficient way, as we can get rid of the overhead produced by the compar-
isons checking that the current PC belongs to the finite part of the corresponding
type. In addition, the type declaration holds for all input programs, whereas be-
fore a separate type inference was needed for each input object program.

Another interesting observation is that the relation �∗
S may be defined as a

particular case of TbHEm by simply declaring the following particular type and
assuming that every argument of every predicate is of this type: s symb −→ F ; I
where F = {f1(τ11, . . . , τ1k1), . . . , fn(τn1, . . . , τnkn)} with f1, . . . , fk being all the
functor symbols which explicitly occur in the program text plus initial goal(s)
and the types τ11, . . . , τnkn , . . . are s symb. I contains the infinite set of all other
possible functors, with auxiliary types i sig in all cases.

6.1 Automatic Inference of Finite Signature

If, in a program with builtins, we can use some static analysis which allows us
to determine that the type of an argument has a finite signature, we can provide

38 E. Albert et al.

this information to the partial evaluator as an f sig declaration, without having
to specify the exact type. E.g., given a logic program processing numeric val-
ues, analyses exist that make over-approximations of the set of values that the
program arguments can have. Polyhedral analyses are perhaps the most widely
known of these and they have successfully been applied to constraint logic pro-
grams [4]. Let us assume for the sake of this discussion that a polyhedral analysis
can return, for a given program and goal, an approximation to the set of calls to
each n-ary predicate p, in the form: p(X1, . . . , Xn) ← c(X1, . . . , Xn), where the
expression c(X1, . . . , Xn) is a set of linear constraints (describing a possibly not
closed polyhedron). From this information it can be determined whether each
argument Xi is bounded or not by projecting c(X1, . . . , Xn) onto Xi. If it is
bounded (from above and below), and it is known that the ith argument takes
on integral values, then it can take only a finite set of values and thus can be
declared as f sig.

Example 3. Consider the following clauses defining a procedure for computing
an exponential.

exp(Base,Exp,Res) : − exp (Base,Exp,1,Res).
exp (,0,Ac,Ac).
exp (Base,Exp,Ac,Res) : − Exp > 0, Exp′ is Exp-1, Ac′ is Ac*Base,

exp (Base,Exp′,Ac′,Res)

Type inference yields the following signature for the predicate exp /4: exp

(t24,t24, t24,t24) with the type t24 --> 0; 1; num. A polyhedral analysis
of the same program with respect to the goal exp(Base,10,Res) yields the fol-
lowing approximation to the queries to exp /4: exp (Base,Exp,Ac,Res) :- Exp >

-1, Exp =< 10. Combining this with the inferred type, and assuming that the
second argument can take only integer values. the second argument (Exp) can be
declared as f sig, and hence we can revert to HEm and do not abstract away the
value of the second argument of exp /4. This allows maximum specialization to
be achieved.

6.2 Experimental Results

We have incorporated the proposed predefined types f sig and i sig within our
partial evaluator and instrumented TbHEm to properly handle them as proposed
above. Table 2 shows the practical benefits that we obtain on a set of numeric
programs which we make extensive use of the arithmetic builtin is/2. exp and
fib correspond to the iterative implementations (using accumulators) of the ex-
ponential and Fibonacci functions respectively. vnr computes a combinatorial
function, in this case without accumulators. list exp takes a list of numbers
and an exponent and computes a list in which every element is powered to the
corresponding exponent (using the predicate exp/3 defined in exp) and also
computes the length of the list by using an accumulator. Finally, dfs performs
a depth-first search avoiding state repetitions in a two dimensional space. Pred-
icate path/4 computes the path and its cost (using an accumulator) given the
initial and final states.

Type-Based Homeomorphic Embedding 39

Table 2. Measuring the effects of �T with numeric programs

Bench Entry Torig Tres� Tres�num PE-type Tres�T

exp exp(11,1000,) 19.60 14.60 19.20 exp (i sig,f sig,i sig,i sig) 14.20
exp(11, ,) 19.20 - 19.20 19.00

fib fib(1000,) 17.20 14.20 16.00 fib (f sig,i sig,i sig,i sig) 14.00
fib(,) 16.80 - 16.00 15.60

vnr vnr(10000,1000,) 31.80 14.20 32.40 vnr(i sig,f sig,i sig) 14.00
vnr(10000, ,) 30.00 - 30.00 32.20

dfs path((1,1),(4,4), ,) 49.79 15.60 43.39 path (f sig,f sig,i sig,i sig,...) 15.80
path(, , ,) 43.39 - 39.79 42.19

list exp lel([1,...,40|],200, ,) 32.40 - 32.40 lel (i sig,i sig,i sig,i sig) 14.40
lel(,200, ,) 31.80 - 31.60 26.80

In this case, in order to measure the quality of the specialization we com-
pare the execution times of the specialized programs (Tres) with the execution
times of the original programs (Torig) for sufficiently large inputs. From left to
right, the first two columns, Bench and Entry, show respectively the name of
the benchmark and the entry for which the program will be specialized. Then,
for each pair benchmark-entry, we show the execution times (in seconds) of the
original programs in Torig and of the corresponding residual programs, by using
the three relations Tres�, Tres�num and Tres�T . We also show the particular
type definition which has been used to guide �T . Note that in this case we do
not consider �∗

S since it does not produce any significant improvement w.r.t.
�num (constants do not play any role in the involved terms). All times have
been computed as the arithmetic means of five runs. For each run, in order to
accurately compare the involved programs we run five consecutive times the call
findall(, Goal,). The particular goals used for measuring the execution times
have been chosen to match the entries proposed for each benchmark. As it can
be seen, �T guarantees termination and outperforms significantly �num. As ex-
pected, � exposes termination problems for some entries as showed in column
Tres�. In the examples in which � terminates, �T behaves as well as �. In
some examples, no improvements are obtained in the residual programs. This is
explained by the fact that the corresponding entries do not provide static infor-
mation to be used in the specialization. In these examples, it is usual to observe
the (unnecessary) over-aggressive nature of � (even endangering termination in
presence of infinite signatures) while, we can see, that the particular type decla-
rations can prevent such undesired behavior in �T . An interesting observation
is that, although many of the examples in this table may be handled in offline
PE (by providing the corresponding annotations), there are cases, as dfs, where
it is not possible to obtain a ranking function for the key arguments. Luckily,
we may infer boundedness which is a sufficient condition to effectively use our
TbHEm.

40 E. Albert et al.

7 Discussion and Related Work

Guaranteeing termination is essential in a number of tasks which have to deal
with possibly infinite computations. These tasks include PE, abstract model
checking, rewriting, etc. Broadly speaking, guaranteeing termination can be tack-
led in an offline or an online fashion. The main difference between these two
perspectives is that in offline termination we aim at statically determining ter-
mination. This means that we do not have the concrete values of arguments at
each point of the computation but rather just abstractions of them. Tradition-
ally, these abstractions refer to the size of values under some measure such as list
length, term size, numeric value for natural numbers, etc. In contrast, in online
termination, we aim at dynamically guaranteeing termination by supervising the
computation in such a way that it is not allowed to proceed as soon as we can
no longer guarantee termination. The main advantage of the offline approach
is that if we can prove termination statically, there is no longer any need to
supervise the computation for termination, which results in important perfor-
mance gains. However, the online approach is potentially more precise, since we
have the concrete values at hand. In offline PE, the problem of termination of
local unfolding has been tackled by annotating arguments as “bounded static”.
The work of Glenstrup and Jones [7] is the main reference, though the idea of
bounded static variation goes back a long way. To detect bounded static argu-
ments it is necessary to prove some decrease in well-founded ordering (e.g. using
size-change techniques). Quasi-termination is weaker than standard termination
but still quite hard to prove. Recent work on this has been done by Vidal [21]
and by Glenstrup and Jones [7]. On the other hand, ensuring termination in
online PE is easier because we can use “dynamic” termination detection based
on supervisors of the computations such as for example embeddings. This means
that we do not need any well-founded orderings but only well-quasi-orderings. In
effect, in our technique it is only necessary to show boundedness of an argument’s
values instead of decrease.

In the context of online PE, we have compared TbHEm with the extension of
the embedding relation to deal with infinite signatures explained in [11], known
as extended embedding with static symbols in Sect. 3.3, which is based on a dis-
tinction between the different static symbols which occur in the program. As we
have shown in the paper, the main advantage of TbHEm is that it achieves a
more refined treatment, as it allows treating different arguments in a different
way depending on their particular types, which can be automatically inferred by
semantic-based analysis, while previous proposals are purely syntactic. Addition-
ally, we have shown that TbHEm can be applied to the specialization of numeric
programs, by means of finite signature annotations, in which static constants do
not play any role.

Acknowledgments. The authors would like to thank the anonymous referees
for their useful comments. This work was funded in part by the Information
Society Technologies program of the European Commission, Future and Emerg-
ing Technologies under the IST-15905 MOBIUS project, by the Danish Natural

Type-Based Homeomorphic Embedding 41

Science Research Council under the FNU-272-06-0574 SAFT project, by the
Spanish Ministry of Education under the TIN-2005-09207 MERIT project, and
by the Madrid Regional Government under the S-0505/TIC/0407 PROMESAS
project.

References

1. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte-
code Using Analysis and Transformation of Logic Programs. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 124–139. Springer, Heidelberg (2007)

2. Albert, E., Hanus, M., Vidal, G.: A practical partial evaluation scheme for
multi-paradigm declarative languages. Journal of Functional and Logic Program-
ming 2002(1) (2002)

3. Albert, E., Puebla, G., Gallagher, J.: Non-leftmost Unfolding in Partial Evaluation
of Logic Programs with Impure Predicates. In: Hill, P.M. (ed.) LOPSTR 2005.
LNCS, vol. 3901, pp. 115–132. Springer, Heidelberg (2006)

4. Benoy, F., King, A.: Inferring argument size relationships with CLP(R). In: Gal-
lagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidel-
berg (1996)

5. Bruynooghe, M., Gallagher, J.P., Van Humbeeck, W.: Inference of Well-Typings
for Logic Programs with Application to Termination Analysis. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 35–51. Springer, Heidelberg
(2005)

6. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, Amsterdam
(1990)

7. Glenstrup, A.J., Jones, N.D.: Termination analysis and specialization-point inser-
tion in offline partial evaluation. ACM Trans. Program. Lang. Syst. 27(6), 1147–
1215 (2005)

8. Hill, P.M., Topor, R.W.: A semantics for typed logic programs. In: Pfenning, F.
(ed.) Types in Logic Programming, pp. 1–62. MIT Press, Cambridge (1992)

9. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York (1993)

10. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society 95, 210–225 (1960)

11. Leuschel, M.A.: Homeomorphic Embedding for Online Termination of Symbolic
Methods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002)

12. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial deduc-
tion: Control issues. Theory and Practice of Logic Programming 2(4&5), 461–515
(2002)

13. Leuschel, M., Martens, B., De Schreye, D.: Controlling Generalisation and Poly-
variance in Partial Deduction of Normal Logic Programs. ACM Transactions on
Programming Languages and Systems 20(1), 208–258 (1998)

14. Leuschel, M.: On the power of homeomorphic embedding for online termination.
In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 230–245. Springer, Heidelberg
(1998)

15. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. The Jour-
nal of Logic Programming 11, 217–242 (1991)

42 E. Albert et al.

16. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987) (sec-
ond, extended edition)

17. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for Prolog. Artif. In-
tell. 23(3), 295–307 (1984)

18. Puebla, G., Albert, E., Hermenegildo, M.: Efficient Local Unfolding with Ancestor
Stacks for Full Prolog. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp.
149–165. Springer, Heidelberg (2005)

19. Puebla, G., Albert, E., Hermenegildo, M.: Abstract Interpretation with Specialized
Definitions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 107–126. Springer,
Heidelberg (2006)

20. Somogyi, Z., Henderson, F., Conway, T.: The Execution Algorithm of Mercury: an
Efficient Purely Declarative Logic Programming Language. JLP 3 (October 1996)

21. Vidal, G.: Quasi-Terminating Logic Programs for Ensuring the Termination of
Partial Evaluation. In: Proc. of the ACM SIGPLAN 2007 Workshop on Partial
Evaluation and Program Manipulation (PEPM 2007), pp. 51–60. ACM Press, New
York (2007)

	Introduction
	Basics on Embedding in Partial Evaluation
	Embedding with Infinite Signatures: Motivating Example
	Using the Original Homeomorphic Embedding
	Recovering Termination: Embedding with Number Filtering
	Increasing Accuracy: Static Symbols in the Program

	Type-Based Homeomorphic Embedding
	Types: Preliminaries and Notation
	Type-Based Homeomorphic Embedding

	Automatic Inference of Well-Typings
	Well-Typings for Working Example
	Experimental Results

	Type-Based Homeomorphic Embedding in Practice
	Automatic Inference of Finite Signature
	Experimental Results

	Discussion and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

