Skip to main content

Approximating Minimum-Power Degree and Connectivity Problems

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

Abstract

Power optimization is a central issue in wireless network design. Given a (possibly directed) graph with costs on the edges, the power of a node is the maximum cost of an edge leaving it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph with edge costs and degree requirements {r(v):v ∈ V}, the Minimum-Power Edge-Multi-Cover () problem is to find a minimum-power subgraph of so that the degree of every node v is at least r(v). We give an O(logn)-approximation algorithms for , improving the previous ratio O(log4 n) of [11]. This is used to derive an O(logn + α)-approximation algorithm for the undirected Minimum-Power k -Connected Subgraph () problem, where is the best known ratio for the min-cost variant of the problem (currently, for n ≥ 2k 2 and otherwise). Surprisingly, it shows that the min-power and the min-cost versions of the k -Connected Subgraph problem are equivalent with respect to approximation, unless the min-cost variant admits an o(logn)-approximation, which seems to be out of reach at the moment. We also improve the best known approximation ratios for small requirements. Specifically, we give a 3/2-approximation algorithm for with r(v) ∈ {0,1}, improving over the 2-approximation by [11], and a \(3\frac{2}{3}\)-approximation for the minimum-power 2-Connected and 2-Edge-Connected Subgraph problems, improving the 4-approximation by [4]. Finally, we give a 4 r max -approximation algorithm for the undirected Minimum-Power Steiner Network () problem: find a minimum-power subgraph that contains r(u,v) pairwise edge-disjoint paths for every pair u,v of nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althaus, E., Calinescu, G., Mandoiu, I., Prasad, S., Tchervenski, N., Zelikovsky, A.: Power efficient range assignment for symmetric connectivity in static ad-hoc wireless networks. Wireless Networks 12(3), 287–299 (2006)

    Article  Google Scholar 

  2. Auletta, V., Dinitz, Y., Nutov, Z., Parente, D.: A 2-approximation algorithm for finding 3-vertex-connected spanning subgraph. J. of Algorithms 32, 21–30 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power assignment in ad hoc wireless networks. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)

    Google Scholar 

  4. Calinescu, G., Wan, P.J.: Range assignment for biconnectivity and k-edge connectivity in wireless ad hoc networks. Mobile Networks and Applications 11(2), 121–128 (2006)

    Article  Google Scholar 

  5. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004)

    Google Scholar 

  6. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the minimum-cost k-vertex connected subgraph. SIAM J. on Computing 32(4), 1050–1055 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Scrijver, A.: Combinatorial Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  8. Dinitz, Y., Nutov, Z.: A 3-approximation algorithm for finding 4,5-vertex-connected spanning subgraph. J. of Algorithms 32, 31–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica, 410–421 (2001)

    Google Scholar 

  10. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions–II. Math. Prog. Study 8, 73–87 (1978)

    MathSciNet  Google Scholar 

  11. Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for connectivity problems. Math. Program. 110(1), 195–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khuller, S.: Approximation algorithms for for finding highly connected subgraphs. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard problems, ch. 6, pp. 236–265. PWS (1995)

    Google Scholar 

  14. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Information Processing Letters 70(1), 39–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kortsarz, G., Nutov, Z.: Approximating node-connectivity problems via set covers. Algorithmica 37, 75–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kortsarz, G., Nutov, Z.: Approximating k-node connected subgraphs via critical graphs. SIAM J. on Computing 35(1), 247–257 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kortsarz, G., Nutov, Z.: Approximating min-cost connectivity problems. In: Gonzales, T. (ed.) Approximation algorithms and Metaheuristics, ch. 58 (2007)

    Google Scholar 

  18. Lando, Y., Nutov, Z.: On minimum power connectivity problems. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 87–98. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Nutov, Z.: Approximating minimum power covers of intersecting families and directed connectivity problems. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 236–247. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Prömel, H.J., Steger, A.: A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. J. of Algorithms 36(1), 89–101 (2000)

    Article  MATH  Google Scholar 

  21. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual approximation algorithm for generalized steiner network problems. Combinatorica 15, 435–454 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kortsarz, G., Mirrokni, V.S., Nutov, Z., Tsanko, E. (2008). Approximating Minimum-Power Degree and Connectivity Problems. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics