Abstract
We show that any compact, orientable, piecewise-linear two-manifold with Euclidean metric can be realized as a flat origami, meaning a set of non-crossing polygons in Euclidean 2-space “plus layers”. This result implies a weak form of a theorem of Burago and Zalgaller: any orientable, piecewise-linear two-manifold can be embedded into Euclidean 3-space “nearly” isometrically. We also correct a mistake in our previously published construction for cutting any polygon out of a folded sheet of paper with one straight cut.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bern, M., Mitchell, S., Ruppert, J.: Linear-size nonobtuse triangulation of polygons. Disc. Comput. Geom. 14, 411–428 (1995)
Bern, M., Hayes, B.: The complexity of flat origami. In: Proc. 7th ACM-SIAM Symp. Disc. Algorithms, pp. 175–183 (1996)
Bern, M., Demaine, E., Eppstein, D., Hayes, B.: A disk-packing algorithm for an origami magic trick. In: E. Lodi, L. Pagli, N. Santoro, (eds.) Preliminary version: Fun with Algorithms, pp. 32–42, Carleton Scientific (1999); Also: Hull, T., Peters, A.K. (ed.) Origami3, pp. 17–28 (2002)
Burago, Y.D., Zalgaller, V.A.: Polyhedral realizations of developments (Russian). Vestnik Leningrad. Univ. 15, 66–80 (1960)
Burago, Y.D., Zalgaller, V.A.: Isometric piecewise linear embedding of two-dimensional manifolds with a polyhedral metric in IR3. St. Petersburg Math. Journal 7, 369–385 (1996)
Connelly, R.: A flexible sphere. Math. Intelligencer 1, 130–131 (1978)
Connelly, R., Sabitov, I., Walz, A.: The bellows conjecture. Contributions to Algebra and Geometry 38, 1–10 (1997)
Demaine, E., Demaine, M., Lubiw, A.: Flattening polyhedra. (Manuscript 2001)
Demaine, E., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, and Polyhedra. Cambridge University Press, Cambridge (2007)
Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. In: Symp. Comp. Geometry (2002)
Hull, T.: On the mathematics of flat origamis. Congressus Numerantium 100, 215–224 (1994)
Krat, S., Burago, Y.D., Petrunin, A.: Approximating short maps by PL-isometries and Arnold’s “Can you make your dollar bigger” problem. In: Fourth International Meeting of Origami Science, Mathematics, and Education, Pasadena (2006)
Kuiper, N.H.: On C 1-isometric imbeddings I. Proc. Nederl. Akad. Wetensch. Ser. A 58, 545–556 (1955)
Lang, R.J.: Origami Design Secrets: Mathematical Methods for an Ancient Art, A.K. Peters (2003)
Nash, J.F.: C 1-isometric imbeddings. Annals of Mathematics 60, 383–396 (1954)
Nash, J.F.: The imbedding problem for Riemannian manifolds. Annals of Mathematics 63, 20–63 (1956)
Pak, I.: Inflating polyhedral surfaces. Department of Mathematics. MIT Press, Cambridge (2006)
Zalgaller, V.A.: Isometric immersions of polyhedra. Dokladi Akademii, Nauk USSR, 123(4) (1958)
Zalgaller, V.A.: Some bendings of a long cylinder. J. Math. Soc. 100, 2228–2238 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bern, M., Hayes, B. (2008). Origami Embedding of Piecewise-Linear Two-Manifolds. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_53
Download citation
DOI: https://doi.org/10.1007/978-3-540-78773-0_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78772-3
Online ISBN: 978-3-540-78773-0
eBook Packages: Computer ScienceComputer Science (R0)