Skip to main content

A Scalable Multilevel Algorithm for Graph Clustering and Community Structure Detection

  • Conference paper
Algorithms and Models for the Web-Graph (WAW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4936))

Included in the following conference series:

  • 760 Accesses

Abstract

One of the most useful measures of cluster quality is the modularity of the partition, which measures the difference between the number of the edges joining vertices from the same cluster and the expected number of such edges in a random (unstructured) graph. In this paper we show that the problem of finding a partition maximizing the modularity of a given graph G can be reduced to a minimum weighted cut problem on a complete graph with the same vertices as G. We then show that the resulted minimum cut problem can be efficiently solved with existing software for graph partitioning and that our algorithm finds clusterings of a better quality and much faster than the existing clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.L.: Diameter of the World Wide Web. Nature 401, 130 (1999)

    Article  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barnard, S.T., Simon, H.D.: A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency: Practice and Experience 6, 101–107 (1994)

    Article  Google Scholar 

  5. Chung, F., Lu, L.: Connected components in random graphs with given degree sequences. Annals of Combinatorics 6, 125–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clauset, A., Newman, M., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Google Scholar 

  7. Erdos, P., Renyi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  8. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network partitions. IEEE Design Automation Conference, 175–181 (1982)

    Google Scholar 

  9. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph Clustering and Minimum Cut Trees. Internet Mathematics 1, 385–408 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Hendrickson, B., Leland, R.: A Multilevel Algorithm for Partitioning Graphs. In: ACM/IEEE conference on Supercomputing (1995)

    Google Scholar 

  11. Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: International Conference on Parallel Processing, pp. 113–122 (1995)

    Google Scholar 

  13. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kerninghan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal (1970)

    Google Scholar 

  15. Newman, M.: Fast algorithm for detecting community structure in networks, Phys. Phys. Rev. E 69, 066133 (2004)

    Google Scholar 

  16. Newman, M.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)

    Google Scholar 

  17. Newman, M.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003)

    Google Scholar 

  18. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Google Scholar 

  19. White, S., Smyth, P.: A Spectral Clustering Approach to Finding Communities in Graphs. In: Proceedings of the SIAM International Conference on Data Mining (2005)

    Google Scholar 

  20. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Aiello Andrei Broder Jeannette Janssen Evangelos Milios

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Djidjev, H.N. (2008). A Scalable Multilevel Algorithm for Graph Clustering and Community Structure Detection. In: Aiello, W., Broder, A., Janssen, J., Milios, E. (eds) Algorithms and Models for the Web-Graph. WAW 2006. Lecture Notes in Computer Science, vol 4936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78808-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78808-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78807-2

  • Online ISBN: 978-3-540-78808-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics