Skip to main content

Numerical Study of Algebraic Problems Using Stochastic Arithmetic

  • Conference paper
Large-Scale Scientific Computing (LSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Included in the following conference series:

  • 1438 Accesses

Abstract

A widely used method to estimate the accuracy of the numerical solution of real life problems is the CESTAC Monte Carlo type method. In this method, a real number is considered as an N-tuple of Gaussian random numbers constructed as Gaussian approximations of the original real number. This N-tuple is called a “discrete stochastic number” and all its components are computed synchronously at the level of each operation so that, in the scope of granular computing, a discrete stochastic number is considered as a granule. In this work, which is part of a more general one, discrete stochastic numbers are modeled by Gaussian functions defined by their mean value and standard deviation and operations on them are those on independent Gaussian variables. These Gaussian functions are called in this context stochastic numbers and operations on them define continuous stochastic arithmetic (CSA). Thus operations on stochastic numbers are used as a model for operations on imprecise numbers. Here we study some new algebraic structures induced by the operations on stochastic numbers in order to provide a good algebraic understanding of the performance of the CESTAC method and we give numerical examples based on the Least squares method which clearly demonstrate the consistency between the CESTAC method and the theory of stochastic numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, R., Lamotte, J.-L., Markov, S.: Numerical Study of Algebraic Solutions to Linear Problems Involving Stochastic Parameters. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 273–280. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Alt, R., Lamotte, J.-L., Markov, S.: Abstract structures in stochastic arithmetic. In: Bouchon-Meunier, B., Yager, R.R. (eds.) Proc. 11th Conference on Information Processing and Management of Uncertainties in Knowledge-based Systems (IPMU 2006), EDK, Paris, pp. 794–801 (2006)

    Google Scholar 

  3. Alt, R., Markov, S.: On Algebraic Properties of Stochastic Arithmetic. Comparison to Interval Arithmetic. In: Kraemer, W., Gudenberg, J.W.v. (eds.) Scientific Computing, Validated Numerics, Interval Methods, pp. 331–342. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  4. Alt, R., Vignes, J.: Validation of Results of Collocation Methods for ODEs with the CADNA Library. Appl. Numer. Math. 20, 1–21 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chesneaux, J.M., Vignes, J.: Les fondements de l’arithmétique stochastique. C.R. Acad. Sci., Paris, Sér. I, Math. 315, 1435–1440 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Delay, F., Lamotte, J.-L.: Numerical simulations of geological reservoirs: improving their conditioning through the use of entropy. Mathematics and Computers in Simulation 52, 311–320 (2000)

    Article  Google Scholar 

  7. NTLAB—INTerval LABoratory V. 5.2., www.ti3.tu-harburg.de/~rump/intlab/

  8. Lamotte, J.-L., Epelboin, Y.: Study of the numerical stability of a X-RAY diffraction model. In: Computational Engineering in Systems Applications, CESA 1998 IMACS Multiconference, Nabeul-Hammamet, Tunisia, vol. 1, pp. 916–919 (1998)

    Google Scholar 

  9. Markov, S.: Least squares approximations under interval input data, Contributions to Computer Arithmetic and Self-Validating Numerical Methods. In: Ullrich, C.P. (ed.) IMACS Annals on computing and applied mathematics, Baltzer, vol. 7, pp. 133–147 (1990)

    Google Scholar 

  10. Markov, S., Alt, R.: Stochastic arithmetic: Addition and Multiplication by Scalars. Appl. Numer. Math. 50, 475–488 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Markov, S., Alt, R., Lamotte, J.-L.: Stochastic Arithmetic: S-spaces and Some Applications. Numer. Algorithms 37(1–4), 275–284 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rokne, J.G.: Interval arithmetic and interval analysis: An introduction, Granular computing: An emerging paradigm, Physica-Verlag GmbH, 1–22 (2001)

    Google Scholar 

  13. Scott, N.S., et al.: Numerical ‘health check’ for scientific codes: The CADNA approach. Comput. Physics communications 176(8), 507–521 (2007)

    Article  Google Scholar 

  14. Toutounian, F.: The use of the CADNA library for validating the numerical results of the hybrid GMRES algorithm. Appl. Numer. Math. 23, 275–289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Toutounian, F.: The stable A T A-orthogonal s-step Orthomin(k) algorithm with the CADNA library. Numer. Algo. 17, 105–119 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vignes, J., Alt, R.: An Efficient Stochastic Method for Round-Off Error Analysis. In: Miranker, W.L., Toupin, R.A. (eds.) Accurate Scientific Computations. LNCS, vol. 235, pp. 183–205. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  17. Vignes, J.: Review on Stochastic Approach to Round-Off Error Analysis and its Applications. Math. and Comp. in Sim. 30(6), 481–491 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vignes, J.: A Stochastic Arithmetic for Reliable Scientific Computation. Math. and Comp. in Sim. 35, 233–261 (1993)

    Article  MathSciNet  Google Scholar 

  19. Yao, Y.Y.: Granular Computing: basic issues and possible solutions. In: Wang, P.P. (ed.) Proc. 5th Joint Conference on Information Sciences, Atlantic City, N. J., USA, February 27– March 3, Assoc. for Intelligent Machinery, vol. I, pp. 186–189 (2000)

    Google Scholar 

  20. http://www.lip6.fr/cadna

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alt, R., Lamotte, JL., Markov, S. (2008). Numerical Study of Algebraic Problems Using Stochastic Arithmetic. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics