Skip to main content

A Parallel Combustion Solver within an Operator Splitting Context for Engine Simulations on Grids

  • Conference paper
Large-Scale Scientific Computing (LSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Included in the following conference series:

  • 1399 Accesses

Abstract

Multidimensional engine simulation is a very challenging field, since many thermofluid processes in complex geometrical configurations have to be considered. Typical mathematical models involve the complete system of unsteady Navier-Stokes equations for turbulent multi-component mixtures of ideal gases, coupled to equations for modeling vaporizing liquid fuel spray and combustion. Numerical solutions of the full system of equations are usually obtained by applying an operator splitting technique that decouples fluid flow phenomena from spray and combustion, leading to a solution strategy for which a sequence of three different sub-models have to be solved. In this context, the solution of the combustion model is often the most time consuming part of engine simulations. This work is devoted to obtain high-performance solution of combustion models in the overall procedure for simulation of engines in a distributed heterogeneous environment. First experiments of multi-computer simulations on realistic test cases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsden, A.A.: KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves, Los Alamos National Laboratory Report No. LA-13313-MS (1997)

    Google Scholar 

  2. Belardini, P., et al.: The Impact of Different Stiff ODE Solvers in Parallel Simulation of Diesel Combustion. In: Yang, L.T., et al. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 958–968. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Belardini, P., et al.: Introducing Combustion-Turbulence Interaction in Parallel Simulation of Diesel Engines. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS, vol. 4208, pp. 1–10. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: A Variable Coefficient ODE Solver. SIAM J. Sci. Stat. Comput 10(5), 1038–1051 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frey, J., et al.: Multi-site Jobs Management System (MJMS): A Tool to manage Multi-site MPI Applications Execution in Grid Environment. In: Proceedings of the HPDC’15 Workshop on HPC Grid Programming Environments and Components (HPC-GECO/CompFrame), IEEE Computer Society, Los Alamitos (to appear)

    Google Scholar 

  6. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer Series in Comput. Mathematics, vol. 14. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  7. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics, SAND89–8009, Sandia National Laboratories (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antonelli, L., D’Ambra, P., Gregoretti, F., Oliva, G., Belardini, P. (2008). A Parallel Combustion Solver within an Operator Splitting Context for Engine Simulations on Grids. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics