Abstract
Mathematical models and their parameters used to describe cell behavior constitute the key problem of bioprocess modelling, in practical, in parameter estimation. The model building leads to an information deficiency and to non unique parameter identification. While searching for new, more adequate modeling concepts, methods which draw their initial inspiration from nature have received the early attention. One of the most common direct methods for global search is genetic algorithm. A system of six ordinary differential equations is proposed to model the variables of the regarded cultivation process. Parameter estimation is carried out using real experimental data set from an E. coli MC4110 fed-batch cultivation process. In order to study and evaluate the links and magnitudes existing between the model parameters and variables sensitivity analysis is carried out. A procedure for consecutive estimation of four definite groups of model parameters based on sensitivity analysis is proposed. The application of that procedure and genetic algorithms leads to a successful parameter identification.
Preview
Unable to display preview. Download preview PDF.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Els. Sc. Publ., Amsterdam (1991)
Carrillo-Ureta, G.E., Roberts, P.D., Becerra, V.M.: Genetic Algorithms for Optimal Control of Beer Fermentation. In: Proc. of the 2001 IEEE International Symposium on Intelligent Control, Mexico City, Mexico, pp. 391–396 (2001)
Chipperfield, A.J., Fleming, P.J.: The Matlab Genetic Algorithm Toolbox, IEE Colloquium Applied Control Techniques Using MATLAB, Sheffield, UK, 10/1–10/4 (1995)
Garipov, E.: Systems Identification, Technical University, Sofia, Bulgaria (2004)
Georgieva, O., Arndt, M., Hitzmann, B.: Modelling of Escherichia coli Fed-Batch Fermentation, International Symposium “Bioprocess Systems”, I.61–I.64 (2001)
Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Massachusetts (1989)
Lagarias, J.C., et al.: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization 9(1), 112–147 (1998)
Levisauskas, D., et al.: Model-based Optimization of Viral Capsid Protein Production in Fed-batch Culture of recombinant. Escherichia coli Bioprocess and Biosystems Engineering 25, 255–262 (2003)
MatWorks Inc., Genetic Algorithms Toolbox, User’s Guide (1999)
Müller, T.G., et al.: Parameter Identification in Dynamical Models of Anaerobic Waste Water Treatment. Mathematical Biosciences 177, 147–160 (2002)
Noykova, N., Gyllenberg, M.: Sensitivity Analysis and Parameter Estimation in a Model of Anaerobic Waste Water Treatment Process with Substrate Inhibition. Bioprocess Engineering 23, 343–349 (2000)
Obitko, M.: Genetic Algorithms (2005), http://cs.felk.cvut.cz/~xobitko/ga
Pohlheim, H.: Genetic and Evolutionary Algorithms: Principles, Methods and Algorithms, Technical Report, Technical University Ilmenau (1994-2007) http://www.geatbx.com/docu/algindex.html
Press, W.H., et al.: Numerical Recipes — The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)
Roeva, O.: Multipopulation genetic algorithm: A tool for parameter optimization of cultivation processes models. In: Boyanov, T., et al. (eds.) NMA 2006. LNCS, vol. 4310, pp. 255–262. Springer, Heidelberg (2007)
Roeva, O.: A Modified Genetic Algorithm for a Parameter Identification of Fermentation Processes. Biotechnology and Biotechnological Equipment 20(1), 202–209 (2006)
Roeva, O.: Application of Genetic Algorithms in Fermentation Process Identification. Journal of the Bulgarian Academy of Sciences CXVI(3), 39–43 (2003)
Roeva, O.: Genetic Algorithms for a Parameter Estimation of a Fermentation Process Model: A Comparison. Bioautomation 3, 19–28 (2005)
Roeva, O., St., T.: Parameter Identification of Fermentation Processes using Multi-population Genetic Algorithms. Technical Ideas XL(3-4), 18–26 (2003)
Zelic, B., et al.: Modeling of the Pyruvate Production with Escherichia coli in a Fed-batch Bioreactor. Bioprocess and Biosystems Engineering 26, 249–258 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Roeva, O. (2008). Parameter Estimation of a Monod-Type Model Based on Genetic Algorithms and Sensitivity Analysis. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_69
Download citation
DOI: https://doi.org/10.1007/978-3-540-78827-0_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78825-6
Online ISBN: 978-3-540-78827-0
eBook Packages: Computer ScienceComputer Science (R0)