Skip to main content

Analysis of Distributed Genetic Algorithms for Solving a Strip Packing Problem

  • Conference paper
Large-Scale Scientific Computing (LSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Included in the following conference series:

  • 1447 Accesses

Abstract

This paper presents a solution of a constrained two dimensional strip packing problem using genetic algorithms. The constraint consists of considering three-stage guillotine patterns. This is quite a real constraint motivated by technological considerations in some industries. An analysis of including distributed population ideas and parallelism into the basic genetic algorithm is carried out to solve the problem accurately and efficiently. Experimental evidence in this work shows that the proposed parallel versions of the distributed algorithms outperform their sequential counterparts in time, although there are no significant differences either in the mean best values obtained or in the effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Information Processing Letters 82(1), 7–13 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley, Chichester (2005)

    Book  MATH  Google Scholar 

  3. Alba, E., et al.: MALLBA: A Library of Skeletons for Combinatorial Optimisation. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 63–73. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, New York (1997)

    Book  MATH  Google Scholar 

  5. Bortfeldt, A.: A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. EJOR 172(3), 814–837 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. EJOR 128(1), 4–57 (2000)

    MATH  Google Scholar 

  7. Lodi, A., Martello, S., Monaci, M.: Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics 123, 379–396 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Michalewicz, M.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  9. Mumford-Valenzuela, C.L., Vick, J., Wang, P.Y.: Metaheuristics: Computer Decision-Making. In: Chapter Heuristics for large strip packing problems with guillotine patterns: An empirical study, pp. 501–522 (2003)

    Google Scholar 

  10. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. Technical Report TR-186-04-04, Technische Universität Wien, Institut für Computergraphik und Algorithmen (2004)

    Google Scholar 

  11. Puchinger, J., Raidl, G.R., Koller, G.: Solving a Real-World Glass Cutting Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 165–176. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Salto, C., Molina, J.M., Alba, E.: Sequential versus distributed evolutionary approaches for the two-dimensional guillotine cutting problem. In: Proc. of International Conference on Industrial Logistics, pp. 291–300 (2005)

    Google Scholar 

  13. Salto, C., Molina, J.M., Alba, E.: Analysis of distributed genetic algorithms for solving cutting problems. ITOR 13(5), 403–423 (2006)

    MATH  Google Scholar 

  14. Salto, C., Molina, J.M., Alba, E.: A comparison of different recombination operators for the 2-dimensional strip packing problem. In: Proc. of the XII Congreso Argentino de Ciencias de la Computación, pp. 1126–1138 (2006)

    Google Scholar 

  15. Salto, C., Molina, J.M., Alba, E.: Evolutionary algorithms for the level strip packing problem. In: Proc. of the Workshop on Nature Inspired Cooperative Strategies for Optimization, pp. 137–148 (2006)

    Google Scholar 

  16. Spiessens, P., Manderick, B.: A massevily parallel genetic algorithm. In: Proc. of the 4th. International Conference on Genetic Algorithms, pp. 279–286 (1991)

    Google Scholar 

  17. Tanese, R.: Distributed genetic algorithms. In: Proc. of the 3rd. International Conference on Genetic Algorithms, pp. 434–439 (1989)

    Google Scholar 

  18. Wang, P.Y., Valenzuela, C.L.: Data set generation for rectangular placement problems. EJOR 134, 378–391 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salto, C., Alba, E., Molina, J.M. (2008). Analysis of Distributed Genetic Algorithms for Solving a Strip Packing Problem. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics