Abstract
Large sparse linear systems Ax= b arise in many scientific applications. Krylov subspace iterative methods are often used for solving such linear systems. Preconditioning techniques are efficient to reduce the number of iterations of Krylov subspace methods. The coefficient matrix of the linear system is transformed into MA or AM in the left or right preconditioning, where M is a preconditioning matrix. In this paper, we analyze the influence of perturbation in the computation of preconditioning of Krylov subspace methods. We show that the perturbation of preconditioner does not affect the accuracy of the approximate solution when the right preconditioning is used. Some numerical experiments illustrate the influence of preconditioners with single precision arithmetic.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, K., et al.: A SOR-base variable preconditioned GCR method (in Japanese). Trans. JSIAM 11, 157–170 (2001)
Barrett, R., et al.: Templates for the solution of linear systems: Building blocks for iterative methods, 2nd edn. SIAM, Philadelphia (1994)
Benzi, M.: Preconditioning techniques for large linear systems: A survey. J. Comput. Phys. 182, 418–477 (2002)
Benzi, M., Tůma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19, 968–994 (1998)
Frommer, A., Lippert, T., Schilling, K.: Scalable parallel SSOR preconditioning for lattice computations in gauge theories. In: European Conference on Parallel Processing, pp. 742–749 (1997)
Matrix Market, http://math.nist.gov/MatrixMarket/
Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)
Van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)
Van der Vorst, H.A.: Iterative Krylov methods for large linear systems. Cambridge University Press, Cambridge (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tadano, H., Sakurai, T. (2008). On Single Precision Preconditioners for Krylov Subspace Iterative Methods. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_83
Download citation
DOI: https://doi.org/10.1007/978-3-540-78827-0_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78825-6
Online ISBN: 978-3-540-78827-0
eBook Packages: Computer ScienceComputer Science (R0)