Skip to main content

Communication in Automation, Including Networking and Wireless

  • Chapter
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

An introduction to the fundamental issues and limitations of communication and networking in automation is given. Digital communication fundamentals are reviewed and networked control systems together with teleoperation are discussed. Issues in both wired and wireless networks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAN:

control area network

DP:

decentralized periphery

HSI:

human system interface

IP:

inaction–penalty

IP:

industrial protocol

IP:

integer programming

IP:

intellectual property

IP:

internet protocol

LTI:

linear time-invariant

MAC:

medium access control

NCS:

networked control system

PAM:

physical asset management

PAM:

pulse-amplitude modulation

PLC:

programmable logic controller

PSK:

phase-shift keying

QAM:

quadrature amplitude modulation

SCADA:

supervisory control and data acquisition

SCST:

source-channel separation theorem

TCP:

transmission control protocol

TDMA:

time-division multiple access

TO:

teleoperator

pdf:

probability distribution function

References

  1. R. Gallager: 6.45 Principles of Digital Communication – I (MIT, Cambridge 2002)

    Google Scholar 

  2. C.E. Shannon: A mathematical theory of communication, Bell Syst. Tech. J. 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  3. S. Vembu, S. Verdu, Y. Steinberg: The source-channel separation theorem revisited, IEEE Trans. Inf. Theory 41(1), 44–54 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Gasfpar, B. Rimoldi, M. Vetterli: To code, or not to code: lossy source-channel communication revisited, IEEE Trans. Inf. Theory 49(5), 1147–1158 (2003)

    Article  Google Scholar 

  5. H. El Gamal: On the scaling laws of dense wireless sensor networks: the data gathering channel, IEEE Trans. Inf. Theory 51(3), 1229–1234 (2005)

    Article  Google Scholar 

  6. J. Proakis: Digital Communications, 4th edn. (McGraw-Hill, New York 2000)

    Google Scholar 

  7. T.M. Cover, J.A. Thomas: Elements of Information Theory (Wiley, New York 1991)

    Book  MATH  Google Scholar 

  8. M. Xie, M. Haenggi: Delay-Reliability Tradeoffs in Wireless Networked Control Systems, Lecture Notes in Control and Information Sciences (Springer, New York 2005)

    Google Scholar 

  9. K.K. Lee, S.T. Chanson: Packet loss probability for bursty wireless real-time traffic through delay model, IEEE Trans. Veh. Technol. 53(3), 929–938 (2004)

    Article  Google Scholar 

  10. J.R. Moyne, D.M. Tilbury: The emergence of industrial control networks for manufacturing control, diagnostics, and safety data, Proc. IEEE 95(1), 29–47 (2007)

    Article  Google Scholar 

  11. M. Ergen, D. Lee, R. Sengupta, P. Varaiya: WTRP – wireless token ring protocol, IEEE Trans. Veh. Technol. 53(6), 1863–1881 (2004)

    Article  Google Scholar 

  12. P.J. Antsaklis, J. Baillieul: Special issue: technology of networked control systems, Proc. IEEE 95(1), 5–8 (2007)

    Article  Google Scholar 

  13. A. Shajii, N. Kottenstette, J. Ambrosina: Apparatus and method for mass flow controller with network access to diagnostics, US Patent 6810308 (2004)

    Google Scholar 

  14. L.A. Montestruque, P.J. Antsaklis: On the model-based control of networked systems, Automatica 39(10), 1837–1843 (2003)

    Article  MathSciNet  Google Scholar 

  15. L.A. Montestruque, P. Antsaklis: Stability of model-based networked control systems with time-varying transmission times, IEEE Trans. Autom. Control 49(9), 1562–1572 (2004)

    Article  MathSciNet  Google Scholar 

  16. T. Estrada, H. Lin, P.J. Antsaklis: Model-based control with intermittent feedback, Proc. 14th Mediterr. Conf. Control Autom. (Ancona 2006) pp. 1–6

    Google Scholar 

  17. B. Recht, R. DʼAndrea: Distributed control of systems over discrete groups, IEEE Trans. Autom. Control 49(9), 1446–1452 (2004)

    Article  MathSciNet  Google Scholar 

  18. M. Kuschel, P. Kremer, S. Hirche, M. Buss: Lossy data reduction methods for haptic telepresence systems, Proc. Conf. Int. Robot. Autom., IEEE Cat. No. 06CH37729D (IEEE, Orlando 2006) pp. 2933–2938

    Google Scholar 

  19. G. Niemeyer, J.-J.E. Slotine: Telemanipulation with time delays, Int. J. Robot. Res. 23(9), 873–890 (2004)

    Article  Google Scholar 

  20. P.F. Hokayem, M.W. Spong: Bilateral teleoperation: an historical survey, Automatica 42(12), 2035–2057 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. N. Kottenstette, P.J. Antsaklis: Stable digital control networks for continuous passive plants subject to delays and data dropouts, 46th IEEE Conf. Decis. Control (CDC) (IEEE, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Kottenstette PhD or Panos J. Antsaklis Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kottenstette, N., Antsaklis, P.J. (2009). Communication in Automation, Including Networking and Wireless. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics