Skip to main content

Automation of Mobility and Navigation

  • Chapter
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter deals with general concepts on the automation of mobility and autonomous navigation. The emphasis is on the control and navigation of autonomous vehicles. Thus, after an introduction with historical background and basic concepts, the chapter briefly reviews general concepts on vehicle motion control by using models of the vehicle, as well as other approaches based on the information provided by humans. Autonomous navigation is also studied, involving not only motion planning and trajectory generation but also interaction with the environment to provide reactivity and adaptation in the autonomous navigation. These interactions are represented by means of nested loops closed at different frequencies with different bandwidth requirements. The human interactions at different levels are also analyzed, taking into account transmission of control commands and feedback of sensory information. Finally, the chapter studies multiple mobile systems by analyzing coordinated navigation of multiple autonomous vehicles and cooperation paradigms for autonomous mission execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AGV:

autonomous guided vehicle

AI:

artificial intelligence

AUV:

autonomous underwater vehicle

DARPA:

Defense Advanced Research Projects Agency

DGC:

DARPA Grand Challenge

GPC:

generalized predictive control

GPRS:

general packet radio service

GPS:

global positioning system

GSM:

global system for mobile communication

LQG:

linear-quadratic-Gaussian

LQR:

linear quadratic regulator

MDP:

Markov decision process

MEMS:

micro-electromechanical system

PDA:

personal digital assistant

PID:

proportional, integral, and derivative

POMDP:

partially observable Markov decision process

RAM:

random-access memory

ROV:

remotely operated underwater vehicle

RPV:

remotely piloted vehicle

RRT:

rapidly exploring random tree

SLAM:

simultaneous localization and mapping technique

SRI:

Stanford Research Institute

UAV:

unmanned aerial vehicle

Wi-Fi:

wireless fidelity

References

  1. R. Marín, J. Garrido, J.L. Trillo, J. Sáez, J. Armesto: An industrial automated warehouse based on overhead trolleys, MCPLʼ97 IFAC/IFIP Conf. Manag. Control Prod. Logist. (Campinas, 1997) pp. 137–142

    Google Scholar 

  2. C.E. Thorpe (Ed.): Vision and Navigation: The Carnegie Mellon Navlab (Kluwer, Boston 1990)

    Google Scholar 

  3. M. Parent, A. de La Fortelle: Cybercars: past, present and future of the technology, Proc. ITS World Congr. (2005)

    Google Scholar 

  4. R. Horowitz, P. Varaiya: Control design of an automated highway system, Proc. IEEE 88(7), 913–925 (2000)

    Article  Google Scholar 

  5. UAV Forum: http://www.uavforum.com/ (last accessed March 5, 2009)

  6. J. Moraleda, A. Ollero, M. Orte: A robotic system for internal inspection of water pipelines, IEEE Robot. Autom. Mag. 6(3), 30–41 (1999)

    Article  Google Scholar 

  7. H.M. Kim, J. Dickerson, B. Kosko: Fuzzy throttle and brake control for platoons of smart cars, Fuzzy Sets Syst. 84, 209–234 (1996)

    Article  Google Scholar 

  8. R.W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, ed. by R.S. Millman, R.W. Brockett, H.H. Sussmann (Birkhauser, Boston 1983)

    Google Scholar 

  9. C.Y. Chan, H.S. Tan: Feasibility analysis of steering control as a driver-assistance function in collision situations, IEEE Trans. Intell. Transp. Syst. 2(1), 1–9 (2001)

    Article  MathSciNet  Google Scholar 

  10. J.H. Hahn, R. Rajamani, L. Alexander: GPS-based real-time identification of tire–road friction coefficient, IEEE Trans. Control Syst. Technol. 10(3), 331–343 (2002)

    Article  Google Scholar 

  11. B. Samadi, R. Kazemi, K.Y. Nikravesh, M. Kabganian: Real-time estimation of vehicle state and tire-road friction forces, Proc. Am. Control Conf. (Arlington 2001) pp. 3318–3323

    Google Scholar 

  12. J. Huang, J. Ahmed, A. Kojic, J.P. Hathout: Control oriented modeling for enhanced yaw stability and vehicle steerability, Proc. Am. Control Conf. (Boston 2004) pp. 3405–3410

    Google Scholar 

  13. A. Kamga, A. Rachid: Speed, steering angle and path tracking controls for a tricycle robot, Proc. IEEE Int. Symp. Computer-Aided Control Syst. Des. (Dearborn 1996) pp. 56–61

    Google Scholar 

  14. C. deWit, B. Siciliano, G. Bastin: Theory of Robot Control (Springer, Berlin Heidelberg 1997)

    Google Scholar 

  15. A. Ollero: Robótica. Manipuladores y Robots Móviles (Marcombo, Spain 2001), in Spanish

    Google Scholar 

  16. J. Wit, C.D. Crane, D. Armstrong: Autonomous ground vehicle path tracking, J. Robot. Syst. 21(8), 439–449 (2004)

    Article  Google Scholar 

  17. A. Rodríguez-Castaño, A. Ollero, B.M. Vinagre, Y.Q. Chen: Setup of a spatial lookahead path tracking controller, Proc. 16th IFAC World Congr. (Prague 2005)

    Google Scholar 

  18. T. Hellström, T. Johansson, O. Ringdahl: Development of an autonomous forest machine for path tracking, Springer Tracts Adv. Robot., Vol. 25 (Springer, Berlin Heidelberg 2006) pp. 603–614

    Google Scholar 

  19. G. Heredia, A. Ollero: Stability of autonomous vehicle path tracking with pure delays in the control loop, Adv. Robot. 21(1), 23–50 (2007)

    Article  Google Scholar 

  20. DARPA Grand Challenge: Special issue, J. Field Robot. 23(8/9), 461–835 (2006)

    Google Scholar 

  21. J.Y. Wang, M. Tomizuka: Robust H∞ lateral control for heavy-duty vehicles in automated highway systems, Proc. Am. Control Conf. (San Diego 1999) pp. 3671–3675

    Google Scholar 

  22. G.H. Elkaim, M. OʼConnor, T. Bell, B. Parkinson: System identification and robust control of farm vehicles using CDGPS, Proc. ION GPS-97 (Kansas City 1997) pp. 1415–1424

    Google Scholar 

  23. A. González-Cantos, A. Ollero: Backing-up maneuvers of autonomous tractor-trailer vehicles using the qualitative theory of nonlinear dynamical systems, Int. J. Robot. Res. 28(1), 49–65 (2009)

    Article  Google Scholar 

  24. A. Astolfi, P. Bolzern, A. Locatelli: Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths: a Lyapunov-based approach, IEEE Trans. Robot. Autom. 20(1), 154–160 (2004)

    Article  Google Scholar 

  25. A. Ollero, L. Merino: Control and perception techniques for aerial robotics, Annu. Rev. Control 28, 167–178 (2004)

    Article  Google Scholar 

  26. O. Amidi, T. Kanade, K. Fujita: A visual odometer for autonomous helicopter flight, Robot. Auton. Syst. 28, 185–193 (1999)

    Article  Google Scholar 

  27. M. Bejar, A. Ollero, F. Cuesta: Modeling and control of autonomous helicopters. In: Advances in Control Theory and Application, Lect. Notes Control Inf. Sci., Vol. 353, ed. by C. Bonivento, A. Isidori, L. Marconi, C. Rossi (Springer, Berlin Heidelberg 2007) pp. 1–27

    Chapter  Google Scholar 

  28. AWARE Project: http://www.aware-project.net (last accessed March 5, 2009)

  29. A. Ollero, A. García-Cerezo, J.L. Martínez, A. Mandow: Fuzzy tracking methods for mobile robots. In: Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems, Vol. 9, ed. by M. Jamshidi, L. Zadeh, A. Titli, S. Boverie (Prentice Hall, Upper Saddle River 1997) pp. 347–364, Chap. 17

    Google Scholar 

  30. G. Buskey, G. Wyeth, J. Roberts: Autonomous helicopter hover using an artificial neural network, Proc. IEEE Int. Conf. Robot. Autom. (2001) pp. 1635–1640

    Google Scholar 

  31. A. Ollero, A. Rodríguez-Castaño, G. Heredia: Analysis of a GPS-based fuzzy supervised path tracking system for large unmanned vehicles, Proc. 4th IFAC Int. Symp. Intell. Compon. Instrum. Control Appl. (SICICA) (Buenos Aires 2000) pp. 141–146

    Google Scholar 

  32. F. Conticelli, D. Prattichizzo, F. Guidi, A. Bicchi: Vision-based dynamic estimation and set-point stabilization of nonholonomic vehicles, Proc. 2000 IEEE Int. Conf. Robot. Autom. (San Francisco 2000) pp. 2771–2776

    Google Scholar 

  33. J. González, A. Stenz, A. Ollero: A mobile robot iconic position estimator using a radial laser scanner, J. Intell. Robot. Syst. 13, 161–179 (1995)

    Article  Google Scholar 

  34. M. Buehler, K. Iaguemma, S. Singh: The 2005 DARPA Grand Challenge, Springer Tracts Adv. Robot., Vol. 36 (Springer, Berlin Heidelberg 2007)

    Book  Google Scholar 

  35. DARPA Urban Challenge: http://www.darpa.mil/grandchallenge/images/photos/11_4_07/D2X_1328.jpg (last accessed March 5, 2009)

  36. S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics, Intelligent Robotics and Autonomous Agents (MIT Press, Cambridge 2005)

    Google Scholar 

  37. R.C. Latombe: Robot Motion Planning (Kluwer, Boston 1991)

    Google Scholar 

  38. S.M. LaValle: Rapidly-exploring random trees: A new tool for path planning TR 98-11 (Iowa Univ., Iowa 1998)

    Google Scholar 

  39. O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  40. S.A. Masoud, A.A. Masoud: Motion planning in the presence of directional and regional avoidance constraints using nonlinear, anisotropic, harmonic potential fields: a physical metaphor, IEEE Trans. Syst. Man Cybern. Part A, 32(6), 705–723 (2002)

    Article  Google Scholar 

  41. V.F. Muñoz, A. Ollero, M. Prado, A. Simón: Mobile robot trajectory planning with dynamic and kinematic constraints, Proc. IEEE Int. Conf. Robot. Autom., San Diego (1994) pp. 2802–2807

    Google Scholar 

  42. F. Cuesta, A. Ollero: Intelligent mobile robot navigation, Springer Tracts Adv. Robot., Vol. 16 (Springer, Berlin Heidelberg 2005)

    MATH  Google Scholar 

  43. A. Mandow, J. Gomez de Gabriel, J.L. Martinez, V.F. Muñoz, A. Ollero, A. García-Cerezo: The autonomous mobile robot aurora for greenhouse operation, IEEE Robot. Autom. Mag. 3(4), 18–28 (1996)

    Article  Google Scholar 

  44. G.L. Calhoun, M.H. Draper, H.A. Ruff, J.V. Fontejon: Utility of a tactile display for cueing faults, Proc. Hum. Factors Ergon. Soc. 46th Annu. Meet. (2002) pp. 2144–2148

    Google Scholar 

  45. P. Daviet, M. Parent: Platooning for small public urban vehicles, 4th Int. Symp. Exp. Robot. (ISERʼ95) (Stanford 1995) pp. 345–354

    Google Scholar 

  46. J. Bom, B. Thuilot, F. Marmoiton, P. Martinet: Nonlinear control for urban vehicles platooning, relying upon a unique kinematic GPS, 22nd Int. Conf. Robot. Autom. (ICRAʼ05) (Barcelona 2005) pp. 4149–4154

    Google Scholar 

  47. Y. Zhang, E.B. Kosmatopoulos, P.A. Ioannou, C.C. Chien: Autonomous intelligent cruise control using front and back information for tight vehicle following maneuvers, IEEE Trans. Veh. Technol. 48(1), 319–328 (1999)

    Article  Google Scholar 

  48. T.S. No, K.-T. Chong, D.-H. Roh: A Lyapunov function approach to longitudinal control of vehicles in a platoon, IEEE Trans. Veh. Technol. 50(1), 116–124 (2001)

    Article  Google Scholar 

  49. J.P. Desai, J.P. Ostrowski, V. Kumar: Modeling and control of formations of nonholonomic mobile robots, IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

    Article  Google Scholar 

  50. M. Egerstedt, X. Hu, A. Stotsky: Control of mobile platforms using a virtual vehicle approach, IEEE Trans. Autom. Control 46, 1777–1782 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  51. T. Balch, R.C. Arkin: Behavior-based formation control for multi-robot teams, IEEE Trans. Robot. Autom. 14, 926–939 (1998)

    Article  Google Scholar 

  52. A. Ollero, I. Maza: Multiple Heterogeneous Aerial Vehicles, Springer Tracts Adv. Robot., Vol. 37 (Springer, Berlin Heidelberg 2007)

    Book  Google Scholar 

  53. I. Maza, A. Viguria, A. Ollero: Aerial and ground robots networked with the environment, Proc. Workshop Netw. Robot Syst. IEEE Int. Conf. Robot. Autom. (2005) pp. 1–10

    Google Scholar 

  54. Y.U. Cao, A.S. Fukunaga, A. Kahng: Cooperative mobile robotics: Antecedents and directions, Auton. Robots 4(1), 7–27 (1997)

    Article  Google Scholar 

  55. T. Schmitt, R. Hanek, M. Beetz, S. Buck, B. Radig: Cooperative probabilistic state estimation for vision-based autonomous mobile robots, IEEE Trans. Robot. Autom. 18(5), 670–684 (2002)

    Article  Google Scholar 

  56. S. Thrun: A probabilistic online mapping algorithm for teams of mobile robots, Int. J. Rob. Res. 20(5), 335–363 (2001)

    Article  Google Scholar 

  57. L. Merino, F. Caballero, J.R. Martínez-de Dios, J. Ferruz, A. Ollero: A cooperative perception system for multiple UAVs: application to automatic detection of forest fires, J. Field Robot. 23(3), 165–184 (2006)

    Article  Google Scholar 

  58. A. Ollero, S. Lacroix, L. Merino, J. Gancet, J. Wiklund, V. Remuss, I.V. Perez, L.G. Gutiérrez, D.X. Viegas, M.A. González, A. Mallet, R. Alami, R. Chatila, G. Hommel, F.J. Colmenero, B.C. Arrue, J. Ferruz, J.R. Martinez-de Dios, F. Caballero: Multiple eyes in the skies, IEEE Robot. Autom. 12(2), 46–57 (2005)

    Article  Google Scholar 

  59. K. Konolige, D. Fox, B. Limketkai, J. Ko, B. Stewart: Map merging for distributed robot navigation, IEEE Int. Conf. Intell. Robot. Syst. (2003) pp. 212–217

    Google Scholar 

  60. L. Merino, F. Caballero, J. Wiklund, A. Moe, J.R. Martínez-de Dios, P.-E. Forssen, K. Nordberg, A. Ollero: Vision-based multi-UAV position estimation, Robot. Autom. Mag. 13(3), 53–62 (2006)

    Article  Google Scholar 

  61. L.E. Parker: Alliance: An architecture for fault-tolerant multi-robot cooperation, IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  62. B.P. Gerkey, M.J. Mataric: A formal analysis and taxonomy of task allocation in multi-robot systems, Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  63. S.C. Botelho, R. Alami: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement, Proc. IEEE Int. Conf. Robot. Autom. (Detroit 1999)

    Google Scholar 

  64. B. Gerkey, M. Mataric: Sold: Auction methods for multi-robot coordination, IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anibal Ollero Prof or Ángel R. Castaño PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ollero, A., Castaño, Á.R. (2009). Automation of Mobility and Navigation. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics