Skip to main content

Machining Lines Automation

  • Chapter
Springer Handbook of Automation

Abstract

This chapter deals with automation of machining lines, sometimes called transfer lines, which are serial machining systems dedicated to the production of large series. They are composed of a set of workstations and an automatic handling system. Each workstation carries out one identical set of operations every cycle time. The design of transfer lines is comprised of several steps: product analysis, process planning, line configuration, transport system design, and line implementation. In this chapter, we deal with line configuration. Its design performance is crucial for companies to compete in the market. The main problem at this step is to assign the operations necessary to manufacture a product to different workstations while respecting all constraints (i.e., the line balancing problem). The aim is to minimize the cost of this line while ensuring a desired production rate. After a review of the existing types of automated machining lines, an illustration of a developed methodology for line configuration is given using an industrial case study of a flexible and reconfigurable transfer line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNC:

computer numerical control

COMSOAL:

computer method of sequencing operations for assembly lines

DTL:

dedicated transfer line

FMS:

field message specification

FMS:

flexible manufacturing system

FMS:

flight management system

FTL:

flexible transfer line

MIP:

mixed integer programming

PCI:

Peripheral Component Interconnect

RMS:

reconfigurable manufacturing systems

RMS:

reliability, maintainability, and safety

RMS:

root-mean-square

RPW:

ranked positioned weight

RTL:

register transfer level

TLBP:

transfer line balancing problem

References

  1. M.P. Groover: Automation, Production Systems and Computer Integrated Manufacturing (Prentice Hall, Eaglewood Cliffs 1987)

    Google Scholar 

  2. R.G. Askin, C.R. Standridge: Modeling and Analysis of Manufacturing Systems (Wiley, New York 1993)

    MATH  Google Scholar 

  3. K. Hitomi: Manufacturing System Engineering (Taylor & Francis, London 1996)

    Google Scholar 

  4. A.I. Dashchenko (Ed.): Manufacturing Technologies for Machines of the Future: 21st Century Technologies (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  5. A.I. Dashchenko (Ed.): Reconfigurable Manufacturing Systems and Transformable Factories (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  6. A. Dolgui, J.M. Proth: Les systèmes de production modernes (Hermes-Science, Paris 2006)

    Google Scholar 

  7. S.Y. Nof, W.E. Wilhelm, H.J. Warnecke: Industrial Assembly (Chapman Hall, London 1997)

    Google Scholar 

  8. A. Kusiak: Modelling and Design of Flexible Manufacturing Systems (Elsevier, Amsterdam 1986)

    Google Scholar 

  9. Y. Koren, U. Heisel, F. Javane, T. Moriwaki, G. Pritchow, H. Van Brussel, A.G. Ulsoy: Reconfigurable manufacturing systems, CIRP Ann. 48(2), 527–598 (1999)

    Article  Google Scholar 

  10. J. Villasenor, W.H. Mangione–Smith: Configurable computing, Sci. Am. 276(6), 66–71 (1997)

    Article  Google Scholar 

  11. G.W. Zhang, S.C. Zhang, Y.S. Xu: Research on flexible transfer line schematic design using hierarchical process planning, J. Mater. Process. Technol. 129, 629–633 (2002)

    Article  Google Scholar 

  12. A. Dolgui, O. Guschinskaya, N. Guschinsky, G. Levin: Decision making and support tools for design of machining systems. In: Encyclopedia of Decision Making and Decision Support Technologies, Vol. 1, ed. by F. Adam, P. Humphreys, (Idea Group, Hershey 2008) pp. 155–164

    Google Scholar 

  13. M.E. Salveson: The assembly line balancing problem, J. Ind. Eng. 6(4), 18–25 (1955)

    Google Scholar 

  14. A. Dolgui (Ed.): Feature cluster on the balancing of assembly and transfer lines, Eur. J. Op. Res. 168(3), 663–951 (2006)

    Google Scholar 

  15. I. Baybars: A survey of exact algorithms for the simple assembly line balancing problem, Manag. Sci. 32(8), 909–932 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Ghosh, R.J. Gagnon: A comprehensive literature review and analysis of the design, balancing and scheduling of assembly line systems, Int. J. Prod. Res. 27, 637–670 (1989)

    Article  Google Scholar 

  17. E. Erel, S.C. Sarin: A survey of the assembly line balancing procedures, Prod. Plan. Control 9(5), 414–434 (1998)

    Article  Google Scholar 

  18. B. Rekiek, A. Dolgui, A. Delchambre, A. Bratcu: State of the art of assembly lines design optimisation, Annu. Rev. Control 26(2), 163–174 (2002)

    Article  Google Scholar 

  19. N. Boysen, M. Fliedner, A. Scholl: A classification of assembly line balancing problems, Eur. J. Oper. Res. 183(2), 674–693 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Boysen, M. Fliedner, A. Scholl: Assembly line balancing: which model to use when?, Int. J. Prod. Econ. 111, 509–528 (2008)

    Article  Google Scholar 

  21. T.K. Bhattachajee, S. Sahu: Complexity of single model assembly line balancing problems, Eng. Costs Prod. Econ. 18, 203–214 (1990)

    Article  Google Scholar 

  22. W.P. Helgeson, D.P. Birnie: Assembly line balancing using the ranked positional weight technique, J. Ind. Eng. 12, 394–398 (1961)

    Google Scholar 

  23. C.L. Moodie, H.H. Young: A heuristic method for assembly line balancing for assumption of constant or variable elements time, J. Ind. Eng. 16, 23–29 (1965)

    Google Scholar 

  24. A.L. Arcus: COMSOAL: a computer method of sequencing operations for assembly lines, Int. J. Prod. Res. 4(4), 259–277 (1966)

    Article  Google Scholar 

  25. F.F. Boctor: A multiple-rule heuristic for assembly line balancing, J. Oper. Res. Soc. 46, 62–69 (1995)

    MATH  Google Scholar 

  26. B. Rekiek, P. De Lit, A. Delchambre: Designing mixed-product assembly lines, IEEE Trans. Robot. Autom. 16(3), 414–434 (1998)

    Google Scholar 

  27. A. Scholl: Balancing and Sequencing of Assembly Lines (Physica, Heidelberg 1999)

    Google Scholar 

  28. M. Amen: Heuristic methods for cost-oriented assembly line balancing, A comparison on solution quality and computing time, Int. J. Prod. Econ. 69, 255–264 (2001)

    Article  Google Scholar 

  29. M. Amen: Heuristic methods for cost oriented assembly line balancing, a survey, Int. J. Prod. Econ. 68, 1–14 (2000)

    Article  Google Scholar 

  30. J. Bukchin, M. Tsur: Design of flexible assembly line to minimize equipment cost, IIE Trans. 32, 585–598 (2000)

    Google Scholar 

  31. J. Bukchin, A. Rubinovitz: A weighted approach for assembly line design with station paralleling and equipment selection, IIE Trans. 35, 73–85 (2002)

    Article  Google Scholar 

  32. C. Andrés, C. Miralles, R. Pastor: Balancing and scheduling tasks in assembly lines with sequence-dependent setup times, Eur. J. Oper. Res. 187(3), 1212–1223 (2008)

    Article  MATH  Google Scholar 

  33. J. Szadkowski: Critical path concept for multi-tool cutting processes optimization. In: Manufacturing Systems Modeling, Management and Control: Proceedings of the IFAC Workshop, ed. by P. Kopacek (Elsevier, Vienna 1997) pp. 393–398

    Google Scholar 

  34. A. Dolgui, N. Guschinski, G. Levin: On problem of optimal design of transfer lines with parallel and sequential operations, Proc. 7th IEEE Int. Conf. Emerg. Technol. Fact. Autom. (ETFAʼ99), Vol. 1, ed. by J.M. Fuertes (IEEE, Barcelona 1999) pp. 329–334

    Google Scholar 

  35. S. Belmokhtar: Lignes dʼusinage avec équipements standards: modélisation, configuration et optimisation. Ph.D. Thesis (Ecole des Mines de Saint Etienne, Saint Etienne 2006), in French

    Google Scholar 

  36. S. Belmokhtar, A. Dolgui, N. Guschinsky, G. Levin: An integer programming model for logical layout design of modular machining lines, Comput. Ind. Eng. 51(3), 502–518 (2006)

    Article  Google Scholar 

  37. A. Dolgui, B. Finel, N. Guschinsky, G. Levin, F. Vernadat: MIP approach to balancing transfer lines with blocks of parallel operations, IIE Trans. 38, 869–882 (2006)

    Article  Google Scholar 

  38. A. Dolgui, N. Guschinsky, G. Levin: A Special case of transfer lines balancing by graph approach, Eur. J. Oper. Res. 168(3), 732–746 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Dolgui, N. Guschinsky, G. Levin, J.M. Proth: Optimisation of multi-position machines and transfer lines, Eur. J. Oper. Res. 185(3), 1375–1389 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Dolgui, I. Ihnatsenka: Branch and bound algorithm for a transfer line design problem: stations with sequentially activated multi-spindle heads, Eur. J. Op. Res. (2007) available online, doi:10.1016/j.ejor.2008.03.028, (in press)

    Google Scholar 

  41. A. Dolgui, I. Ihnatsenka: Balancing modular transfer lines with serial-parallel activation of spindle heads at stations, Discret. Appl. Math. 157(1), 68–89 (2009)

    Google Scholar 

  42. W.E. Wilhelm: A column-generation approach for the assembly system design problem with tool changes, Int. J. Flex. Manuf. Syst. 11, 177–205 (1999)

    Article  MathSciNet  Google Scholar 

  43. O. Guschinskaya, A. Dolgui, N. Guschinsky, G. Levin: A heuristic multi-start decomposition approach for optimal design of serial machining lines, Eur. J. Oper. Res. 189(3), 902–913 (2008)

    Article  MATH  Google Scholar 

  44. B. Finel: Structuration de lignes dʼusinage: méthodes exactes et heuristiques. Ph.D. Thesis (Université de Metz, Metz 2004), in French

    Google Scholar 

  45. A. Dolgui, B. Finel, N. Guschinsky, G. Levin, F. Vernadat: An heuristic approach for transfer lines balancing, J. Intell. Manuf. 16(2), 159–171 (2005)

    Article  Google Scholar 

  46. B. Finel, A. Dolgui, F. Vernadat: A random search and backtracking procedure for transfer line balancing, Int. J. Comput. Integr. Manuf. 21(4), 376–387 (2008)

    Google Scholar 

  47. M. Essafi, X. Delorme, A. Dolgui: A heuristic method for balancing machining lines with paralleling of stations and sequence-dependent setup times, Proc. Int. Workshop LTʼ2007 (Sousse 2007) pp. 349–354

    Google Scholar 

  48. O. Guschinskaya: Outils dʼaide à la décision pour la conception en avant-projet des systèmes dʼusinage à boîtiers multibroches. Ph.D. Thesis (Ecole des Mines de Saint Etienne, Saint Etienne 2007), in French

    Google Scholar 

  49. S. Masood: Line balancing and simulation of an automated production transfer line, Assem. Autom. 26(1), 69–74 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xavier Delorme PhD , Alexandre Dolgui PhD , Mohamed Essafi MSc , Laurent Linxe or Damien Poyard MEng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delorme, X., Dolgui, A., Essafi, M., Linxe, L., Poyard, D. (2009). Machining Lines Automation. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics