Skip to main content

Large-Scale Complex Systems

  • Chapter
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

Large-scale complex systems (LSS) have traditionally been characterized by large numbers of variables, structure of interconnected subsystems, and other features that complicate the control models such as nonlinearities, time delays, and uncertainties. The decomposition of LSS into smaller, more manageable subsystems allowed for implementing effective decentralization and coordination mechanisms. The last decade revealed new characteristic features of LSS such as the networked structure, enhanced geographical distribution and increased cooperation of subsystems, evolutionary development, and higher risk sensitivity. This chapter aims to present a balanced review of several traditional well-established methods and new approaches together with typical applications. First the hierarchical systems approach is described and the transition from coordinated control to collaborative schemes is highlighted. Three subclasses of methods that are widely utilized in LSS – decentralized control, simulation-based, and artificial-intelligence-based schemes – are then reviewed. Several basic aspects of decision support systems (DSS) that are meant to enable effective cooperation between man and machine and among the humans in charge with LSS management and control are briefly exposed. The chapter concludes by presenting several technology trends in LSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

artificial intelligence

ANN:

artificial neural network

ATC:

available transfer capability

CIM:

computer integrated manufacturing

CRM:

customer relationship management

DM:

decision-making

DMP:

decision-making processes

DMP:

dot matrix printer

DSS:

decision support system

FDD:

fault detection and diagnosis

FLC:

fuzzy logic control

FOC:

federation object coordinator

GA:

genetic algorithms

HMS:

hierarchical multilevel system

ICT:

information and communication technology

IFAC:

International Federation of Automatic Control

KS:

knowledge subsystem

LMI:

linear matrix inequality

LS:

language subsystem

LSS:

large-scale complex system

MIS:

management information system

MIS:

minimally invasive surgery

MPC:

model-based predictive control

PCA:

principal component analysis

PCB:

printed circuit board

PID:

proportional, integral, and derivative

PPS:

problem processing subsystem

RT:

radiotherapy

RT:

register transfer

SDS:

sequential dynamic system

SoS:

systems of systems

References

  1. R. Tomovic: Control of large systems. In: Simulation of Control Systems, ed. by I. Troch (North Holland, Amsterdam 1972) pp. 3–6

    Google Scholar 

  2. M.S. Mahmoud: Multilevel systems control and applications, IEEE Trans. Syst. Man Cybern. SMC–7, 125–143 (1977)

    Article  MathSciNet  Google Scholar 

  3. D.D. Šiljak: Large Scale Dynamical Systems: Stability and Structure (North Holland, Amsterdam 1978)

    Google Scholar 

  4. Solver.com: Premium Solver Platform for Excel www.solver.com (2007)

  5. M. Athans: Advances and open problems in the control of large-scale systems, Plenary paper, Proc. 7th IFAC Congr. (Pergamon, Oxford 1978), 871–2382

    Google Scholar 

  6. M. Jamshidi: Large Scale Systems: Modeling and Control (North Holland, New York 1983) 2nd edn. (Prentice Hall, Upper Saddle River 1997)

    MATH  Google Scholar 

  7. M.D. Mesarovic, D. Macko, Y. Takahara: Theory of Hierarchical Multilevel Systems (Academic, New York 1970)

    Google Scholar 

  8. W. Findeisen: Decentralized and hierarchical control under consistence or disagreements of interests, Automatica 18(6), 647–664 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Takatsu: Coordination principles for two-level satisfactory decision-making systems, Syst. Sci. 7(3/4), 266–284 (1982)

    MathSciNet  Google Scholar 

  10. F.G. Filip, D.A. Donciulescu: On an online dynamic coordination method in process industry, IFAC J. Autom. 19(3), 317–320 (1983)

    Article  Google Scholar 

  11. L. Mårtenson: Are operators in control of complex systems?, Proc. 13th IFAC World Congr., Vol. B (Pergamon, Oxford 1990) pp. 259–270

    Google Scholar 

  12. S.Y. Nof, G. Morel, L. Monostori, A. Molina, F.G. Filip: From plant and logistics control to multi-enterprise collaboration, Annu. Rev. Control 30(1), 55–68 (2006)

    Article  Google Scholar 

  13. A.P. Sage, C.D. Cuppan: On the system engineering of systems of systems and federations of systems, Inf. Knowl. Syst. Manage. 2(4), 325–349 (2001)

    Google Scholar 

  14. A.V. Gheorghe: Risks, vulnerability, maintainability and governance: a new landscape for critical infrastructures, Int. J. Crit. Infrastruct. 1(1), 118–124 (2004)

    Article  Google Scholar 

  15. A.V. Gheorghe: Integrated Risk and Vulnerability Management Assisted by Decision Support Systems. Relevance and Impact on Governance (Springer, Dordrecht 2005)

    Book  Google Scholar 

  16. W. Findeisen, M. Brdys, K. Malinowski, P. Tatjewski, A. Wozniak: Control and Coordination in Hierachical Systems (Wiley, Chichester 1980)

    Google Scholar 

  17. A. Titli: Commande hierarchisée des systemes complexes (Dunod Automatique, Paris 1975)

    Google Scholar 

  18. M. Brdys, P. Tatjewski: Iterative Algorithms for Multilayer Optimizing Control (Imperial College, London 2001)

    Google Scholar 

  19. A. Dourado Correia: Optimal scheduling and energy management in industrial complexes: some new results and proposals, Preprints CIM Process Manufact. Ind. IFAC Workshop (Pergamon Press, Espoo 1992) pp. 139–145

    Google Scholar 

  20. F.G. Filip, G. Neagu, D. Donciulescu: Jobshop scheduling optimization in real-time production control, Comput. Ind. 4(3), 395–403 (1983)

    Article  Google Scholar 

  21. F.G. Filip, D. Donciulescu, R. Gaspar, M. Muratcea, L. Orasanu: Multilevel optimisation algorithms in computer aided production control in the process industries, Comput. Ind. 6(1), 47–57 (1985)

    Article  Google Scholar 

  22. M. Guran, F.G. Filip, D.A. Donciulescu, L. Orasanu: Hierarchical optimisation in computer dispatcher systems in process industry, Large Scale Syst. 8, 157–167 (1985)

    MATH  Google Scholar 

  23. J. Pettersson, U. Persson, T. Lindberg, L. Ledung, X. Zhang: Online pulp mill production optimization, Proc. 16th IFAC World Congr. (Prague 2005), on CD ROM

    Google Scholar 

  24. H. Tamura: Decentralised optimization for distributed-lag models of discrete systems, Automatica 11, 593–602 (1975)

    Article  MATH  Google Scholar 

  25. A. Aybar, A. Iftar, H. Apaydin-Özkan: Centralized and decentralized supervisory controller design to enforce boundedness, liveness, and reversibility in Petri nets, Int. J. Control 78, 537–553 (2005)

    Article  MATH  Google Scholar 

  26. L. Bakule: Stabilization of uncertain switched symmetric composite systems, Nonlinear Anal.: Hybrid Syst. 1, 188–197 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. F. Borrelli, T. Keviczky, G.J. Balas, G. Steward, K. Fregene, D. Godbole: Hybrid Decentralized Control of Large Scale Systems, Hybrid Systems: Computation and Control (Springer, Heidelberg 2005) pp. 168–183

    Google Scholar 

  28. G. Inalham, J. How: Decentralized inventory control for large-scale supply chains, Proc. Am. Control Conf. (Minneapolis 2006) pp. 568–575

    Google Scholar 

  29. P. Krishnamurthy, F. Khorrami, D. Schoenwald: Computationally tractable inventory control for large-scale reverse supply chains, Proc. Am. Control Conf. (Minneapolis 2006) pp. 550–555

    Google Scholar 

  30. C. Langbort, V. Gupta, R.M. Murray: Distributed control over falling channels. In: Networked Embedded Sensing and Control, ed. by P. Antsaklis, P. Tabuada (Springer, Berlin 2006) pp. 325–342

    Google Scholar 

  31. D.D. Šiljak, A.I. Zečević: Control of large-scale systems: beyond decentralized feedback, Annu. Rev. Control 29, 169–179 (2005)

    Article  Google Scholar 

  32. D.D. Šiljak: Dynamic Graphs. Plenary paper. The International Conference on Hybrid Systems and Applications (University of Louisiana, Lafayette 2006)

    Google Scholar 

  33. A. Arisha, P. Young: Intelligent simulation-based lot scheduling of photolithography toolsets in a wafer fabrication facility, Proc. 2004 Winter Simul. Conf. (Washington 2004) pp. 1935–1942

    Google Scholar 

  34. C.S. Chong, A.I. Sivakumar, R. Gay: Simulation based scheduling using a two-pass approach, Proc. 2003 Winter Simul. Conf. (New Orleans 2003) pp. 1433–1439

    Google Scholar 

  35. A.K. Gupta, A.I. Sivakumar, S. Sarawgi: Shopfloor scheduling with simulation based proactive decision support, Proc. Winter Simul. Conf. (San Diego 2002) pp. 1897–1902

    Google Scholar 

  36. S. Julia, R. Valette: Real-time scheduling of batch systems, Simul. Pract. Theory 8, 307–319 (2000)

    Article  MATH  Google Scholar 

  37. S. Lee, S. Ramakrishnan, R.A. Wysk: A federation object coordinator for simulation based control and analysis, Proc. Winter Simul. Conf. (San Diego 2002) pp. 1986–1994

    Google Scholar 

  38. K. Leiviskä, P. Uronen, H. Komokallio, H. Aurasmaa: Heuristic algorithm for production control of an integrated pulp and paper mill, Large Scale Syst. 3, 13–25 (1982)

    Google Scholar 

  39. K. Leiviskä: Benefits of intelligent production scheduling methods in pulp mills, Proc. CESAʼ96 IMACS Multiconf. Comput. Eng. Syst. Appl. Symp. Control Optim. Supervis., Vol. 2 (Lille 1996) pp. 1246–1251

    Google Scholar 

  40. Q.L. Liu, W. Wang, H.R. Zhan, D.G. Wang, R.G. Liu: Optimal scheduling method for a bell-type batch annealing shop and its application, Control Eng. Pract. 13, 1315–1325 (2005)

    Article  Google Scholar 

  41. S. Ramakrishnan, S. Lee, R.A. Wysk: Implementation of a simulation-based control architecture for supply chain interactions, Proc. Winter Simul. Conf. (San Diego 2002) pp. 1667–1674

    Google Scholar 

  42. S. Ramakrishnan, M. Thakur: An SDS modeling approach for simulation-based control, Proc. Winter Simul. Conf. (Orlando 2005) pp. 1473–1482

    Google Scholar 

  43. G.D. Taylor Jr: A flexible simulation framework for evaluating multilevel, heuristic-based production control strategies, Proc. Winter Simul. Conf. (New Orleans 1990) pp. 567–569

    Google Scholar 

  44. A. Ichtev, J. Hellendoom, R. Babuska, S. Mollov: Fault-tolerant model-based predictive control using multiple Takagi–Sugeno fuzzy models, Proc. IEEE Int. Conf. Fuzzy Syst. FUZZ-IEEEʼ02, Vol. 1 (Honolulu 2002) pp. 346–351

    Google Scholar 

  45. K. Leiviskä: Applications of intelligent systems in electronics manufacturing, Proc. 2nd Conf. Manag. Control Prod. Logist. MCPLʼ2000 (Grenoble 2000), on CD-ROM

    Google Scholar 

  46. K. Leiviskä, L. Yliniemi: Design of adaptive fuzzy controllers. In: Do Smart Adaptive Systems Exist?, ed. by B. Gabrys, K. Leiviskä, J. Strackeljan (Springer, Berlin 2005) pp. 251–266

    Chapter  Google Scholar 

  47. B. Azhar, A.B. Khairuddin, S.S. Ahmed, M.W. Mustafa, A. Zin, H. Ahmad: A novel method for ATC computations in a large-scale power system, IEEE Trans. Power Syst. 19(2), 1150–1158 (2004)

    Article  Google Scholar 

  48. M.A. Hussain: Review of the applications of neural networks in chemical process control-simulation and online implementation, Artif. Intell. Eng. 13, 55–68 (1999)

    Article  Google Scholar 

  49. W. Liu, J. Sarangapani, G.K. Venayagamoorthy, D.C. Wunsch, D.A. Cartes: Neural network based decentralized excitation control of large scale power systems, Proc. Int. Jt. Conf. Neural Netw. (Vancouver 2006)

    Google Scholar 

  50. M. Dehghani, A. Afshar, S.K. Nikravesh: Decentralized stochastic control of power systems using genetic algorithms for interaction estimation, Proc. 16th IFAC World Congr. (Prague 2005), on CD ROM

    Google Scholar 

  51. E.E. El Mdbouly, A.A. Ibrahim, G.Z. El-Far, M. El Nassef: Multilevel optimization control for large-scale systems using genetic algorithms, Proc. 2004 Int. Conf. Electr., Electron. Comput. Eng. ICEEC ʼ04 (Cairo 2004) pp. 193–197

    Google Scholar 

  52. R. Akkiraju, P. Keskinocak, S. Murthy, F. Wu: An agent-based approach for scheduling multiple machines, Appl. Intell. 14(2), 135–144 (2001)

    Article  MATH  Google Scholar 

  53. H. Hadeli, P. Valckenaers, C.B. Zamfirescu, H. Van Brussel, B.S. Germain: Self-organising in multi-agent coordination and control using stigmergy. In: Self-Organising Applications: Issues, challenges and trends. Lecture Notes in Artificial Intelligence, Vol. 2977, ed. by H. Hadeli (Springer, Heidelberg 2004) pp. 325–340

    Google Scholar 

  54. J.S. Heo, K.Y. Lee: A multi-agent system-based intelligent identification system for power plant control and fault-diagnosis, Proc. IEEE Power Eng. Soc. Gen. Meet. (Montreal 2006) pp. 1–6

    Google Scholar 

  55. V. Mařík, J. Lažanský: Industrial applications of agent technologies, Control Eng. Pract. 15(11), 1364–1380 (2007)

    Google Scholar 

  56. S.J. Park, J.T. Lim: Modelling and control of agent-based power protection systems using supervisors, IEEE Proc. Control Theory Appl. 153, 92–99 (2006)

    Article  MathSciNet  Google Scholar 

  57. H.V.D. Parunak: Practical and Industrial Applications of Agent-Based Systems (Industrial Technology Institute, Ann Arbor 1998)

    Google Scholar 

  58. C.G. Cassandras: Complexity made simple – at small price, Proc. 9th IFAC Symp. Large Scale Systems: Theory and Applications 2001, ed. by F.G. Filip, I. Dumitrache, S. Iliescu (Elsevier, Oxford 2001) pp. 1–5

    Google Scholar 

  59. P.D. Roberts: An algorithm for steady-state system optimization and parameter estimation, Int. J. Syst. Sci. 10(7), 719–734 (1979)

    Article  MATH  Google Scholar 

  60. P.P. Varaiya: Review of the book Theory of Hierarchical Multilevel Systems, IEEE Trans. Autom. Control 17, 280–281 (1972)

    Article  MathSciNet  Google Scholar 

  61. D. Wismer: Optimization Methods for Large Scale Systems (Mc. Graw Gill, New York 1971)

    MATH  Google Scholar 

  62. Y.C. Ho, S.K. Mitter: Directions in Large-Scale Systems (Plenum, New York 1976)

    MATH  Google Scholar 

  63. A.P. Sage: Methodology for Large Scale Systems (McGraw Hill, New York 1977)

    MATH  Google Scholar 

  64. D.D. Šiljak: Decentralized Control of Complex Systems (Academic, Cambridge 1990)

    MATH  Google Scholar 

  65. M.G. Singh: Dynamic Hierarchical Control (North Holland, Amsterdam 1978)

    Google Scholar 

  66. J. Lunze: Feedback Control of Large-Scale Systems (Prentice Hall, New York 1992)

    MATH  Google Scholar 

  67. D. Steward: Systems Analysis and Management: Structure, Strategy and Design (Petrocelli Book, New York 1981)

    Google Scholar 

  68. J. Schoeffler: Online multilevel systems. In: Optimization Methods for Large Scale Systems, ed. by D. Wismer (McGraw Hill, New York 1971) pp. 291–330

    Google Scholar 

  69. J. Minsker, S. Piggot, G. Freidson: Hierarchical automation control systems for large-scale systems and applications, Proc. 5th IFAC World Congr. (Paris 1972)

    Google Scholar 

  70. D.P. Eckman, I. Lefkowitz: Principles of model technique in optimizing control, Proc. 1st IFAC World Congr. (Moscow 1960) pp. 970–974

    Google Scholar 

  71. I. Lefkowitz: Multilevel approach to control system design, Proc. JACC (1965) pp. 100–109

    Google Scholar 

  72. R. Isermann: Advanced methods of process computer control for industrial, Int. J. Comput. Ind. 2(1), 59–72 (1981)

    Article  Google Scholar 

  73. V. Havlena, J. Lu: A distributed automation framework for plant-wide control, optimisation, scheduling and planning, selected plenaries, semiplenaries, milestones and surveys, Proc. 16th IFAC World Congr., ed. by P. Horacet, M. Simandl, P. Zitek (2005) pp. 80–94

    Google Scholar 

  74. C.B. Brosilow, L. Ladson, J.D. Pearson: Feasible optimization methods for interconnected systems, Proc. Joint Autom. Control Conf. – JACC (Rensselaer Polytechnic Institute, Troy, New York 1965) pp. 79–84

    Google Scholar 

  75. L.S. Lasdon, J.D. Schoeffer: A multilevel technique for optimization, Proc. JACC (1965) pp. 85–92

    Google Scholar 

  76. I.D. Wilson: Foundations of hierarchical control, Int. J. Control 29(6), 899 (1979)

    Article  MATH  Google Scholar 

  77. F.G. Vernadat: Enterprise Modelling and Integration Principles and Applications (Chapman Hall, London 1996)

    Google Scholar 

  78. T.J. Williams: Analysis and Design of Hierarchical Control Systems with Special Reference to Steel Plant Operations (Elsevier, Amsterdam 1985)

    Google Scholar 

  79. T.J. Williams: A Reference Model for Computer Integrated Manufacturing (Instrument Society of America, Research Triangle Park 1989)

    Google Scholar 

  80. Z. Binder: Sur lʼorganisation et la conduite des systemes complexes, These de Docteur (LAG, Grenoble 1977) in French

    Google Scholar 

  81. J. Hatvany: Intelligence and cooperation in heterarchic manufacturing systems, Robot. Comput. Integr. Manuf. 2(2), 101–104 (1985)

    Article  Google Scholar 

  82. A. Koestler: The Ghost in the Machine (Hutchinson, London 1967)

    Google Scholar 

  83. M. Hopf, C.F. Schoeffer: Holonic Manufacturing Systems, Information Infrastructure Systems for Manufacturing (Chapmann Hall, London 1997) pp. 431–438

    Google Scholar 

  84. H. Van Brussel, P. Valckenaers, J. Wyns: HMS – holonic manufacturing system test case (IMS Project). In: Enterprise Engineering and Integration: Building International Consensus, ed. by K. Kosanke, J.G. Nell (Springer, Berlin 1997) pp. 284–292

    Google Scholar 

  85. P. Valckenaers, H. Van Brussel, K. Hadeli, O. Bochmann, B.S. Germain, C. Zamfirescu: On the design of emergent systems an investigation of integration and interoperability issues, Eng. Appl. Artif. Intell. 16, 377–393 (2003)

    Article  Google Scholar 

  86. G. Tecuci: Building Intelligent Agents: An Apprenticeship Multistrategy Learning Theory, Methodology, Tool and Case Studies (Academic, New York 1998)

    Google Scholar 

  87. L. Bakule: Complexity-reduced guaranteed cost control design for delayed uncertain symmetrically connected systems, Proc. 2005 Am. Control Conf. (Portland 2005) pp. 2500–2505

    Google Scholar 

  88. P.P. Groumpos: Complex systems and intelligent control: issues and challenges, Proc. 9th IFAC Symp. Large Scale Syst.: Theory Appl. 2001, ed. by F.G. Filip, I. Dumitrache, S. Iliescu (Elsevier, 2001) pp. 29–36

    Google Scholar 

  89. A. Kamiya, S.J. Ovaska, R. Roy, S. Kobayashi: Fusion of soft computing and hard computing for large-scale plants: a general model, Appl. Soft Comput. J. 5, 265–279 (2005)

    Article  Google Scholar 

  90. K. Leiviskä: Control systems. In: Process Control. Papermaking Science and Technology, Book 14, ed. by K. Leiviskä (Fapet Oy, Jyväskylä 1999) pp. 13–17

    Google Scholar 

  91. B.M. Åkesson, M.J. Nikus, H.T. Toivonen: Explicit model predictive control of a hybrid system using support vector machines, Proc. 1st IFAC Workshop Appl. Large Scale Ind. Syst. ALSIS ʼ06 (Helsinki/Stockholm 2006), on CD ROM

    Google Scholar 

  92. K. Kawai: Knowledge engineering in power-plant control and operation, Control Eng. Pract. 4, 1199–1208 (1996)

    Article  Google Scholar 

  93. G. Stephanopoulos, J. Romagnoli, E.S. Yoon: Online Fault Detection and Supervision in the Chemical Process Industries 2001 (Jejudo Island, Korea 2004)

    Google Scholar 

  94. D.H. Zhang, J.B. Zhang, Y.Z. Zhao, M.M. Wong: Event-based communications for equipment supervisory control, Proc. 10th IEEE Conf. Emerg. Technol. Fact. Autom. (Catania 2005) pp. 341–347

    Google Scholar 

  95. T. Martin, J. Kivinen, J.E. Rinjdorp, M.G. Rodd, W.B. Rouse: Appropriate automation integrating human, organisation and culture factors, Preprints IFAC 11th World Congr., Vol. 1 (1990) pp. 47–65

    Google Scholar 

  96. F.G. Filip: Towards more humanized real-time decision support systems. In: Balanced Automation Systems; Architectures and Design Methods, ed. by L.M. Camarinha-Matos, H. Afsarmanesh (Chapman Hall, London 1995) pp. 230–240

    Google Scholar 

  97. F.G. Filip, D. Donciulescu, C.I. Filip: Towards intelligent real-time decision support systems, Stud. Inf. Control SIC 11(4), 303–312 (2002)

    Google Scholar 

  98. H. Simon: The New Science of Management Decisions (Harper & Row, New York 1960)

    Google Scholar 

  99. S.Y. Nof: Theory and practice in decision support for manufacturing control. In: Data Base Management, ed. by C.W. Holsapple, A.B. Whinston (Reidel, Dordrecht 1981) pp. 325–348

    Google Scholar 

  100. A. Bosman: Relations between specific DSS, Decis. Support Syst. 3, 213–224 (1987)

    Article  Google Scholar 

  101. A.R. Charturverdi, G.K. Hutchinson, D.L. Nazareth: Supporting real-time decision-making through machine learning, Decis. Support Syst. 10, 213–233 (1997)

    Article  Google Scholar 

  102. M. Cioca, L.I. Cioca, S.C. Buraga: Spatial [elements] decision support system used in disaster management, Digit. EcoSyst. Technol. Conf. 2007. DEST ʼ07. Inaugural IEEE-IES (Cairn 2006) pp. 607–612

    Google Scholar 

  103. G. De Michelis: Coordination with cooperative processes. In: Implementing Systems for Support Management Decisions, ed. by P. Humphrey, L. Bannon, A. McCosh, P. Migliarese, J.C. Pomerol (1996) pp. 108–123

    Google Scholar 

  104. R.H. Bonczek, C.W. Holsapple, A.B. Whinston: Foundations of Decision Support Systems (Academic, New York 1980)

    Google Scholar 

  105. C.W. Holsapple, A.B. Whinston: Decision Support System: a Knowledge-Based Approach (West, Mineapolis 1996)

    Google Scholar 

  106. A. Kusiak: Intelligent Management Systems (Prentice Hall, Englewood Cliffs 1990)

    Google Scholar 

  107. A. Dutta: Integrated AI and optimization for decision support: a survey, Decis. Support Syst. 18, 213–226 (1996)

    Google Scholar 

  108. L. Duta, J.M. Henrioud, F.G. Filip: Applying equal piles approach to disassembly line balancing problem, Proc. 16th IFAC World Congr. (Session Industrial Assembly and Disassembly) (Prague 2005), on CD ROM

    Google Scholar 

  109. O. Mäyrä, T. Ahola, K. Leiviskä: Time delay estimation in large data bases, IFAC LSSTA Symp. (Gdansk 2007), on CD ROM

    Google Scholar 

  110. F.G. Filip: System analysis and expert systems techniques for operative decision making, J. Syst. Anal. Model. Simul. 8(2), 296–404 (1990)

    Google Scholar 

  111. I. Lefkowitz: Hierarchical control in large-scale industrial systems. In: Large Scale Systems, ed. by D.D. Haimes (North Holland, Amsterdam 1982) pp. 65–98

    Google Scholar 

  112. M. Brdys, B. Ulanicki: Operatioal Control of Water Systems (Prentice Hall, New York 1994)

    Google Scholar 

  113. L. Bakule, F. Paulet-Crainiceanu, J. Rodellar, J.M. Rossell: Overlapping reliable control for a cable-stayed bridge benchmark, IEEE Trans. Control Syst. Technol. 4, 663–669 (2006)

    Google Scholar 

  114. L. Bakule, J. Rodellar, J.M. Rossell: Robust overlapping guaranteed cost control of uncertain steady-state discrete-time systems, IEEE Trans. Autom. Control 12, 1943–1950 (2006)

    Article  MathSciNet  Google Scholar 

  115. R. Srikant: The Mathematics of Internet Congestion Control (Birkhäuser, Boston 2004)

    MATH  Google Scholar 

  116. D.M. Stipanovic, G. Inalham, R. Teo, C.J. Tomlin: Decentralized overlapping control of a formation of unmanned aerial vehicles, Automatica 40(1), 1285–1296 (2004)

    Article  MATH  Google Scholar 

  117. S.S. Stankovic, M.J. Stanojevic, D.D. Šiljak: Decentralized overlapping control of a platoon of vehicles, IEEE Trans. Control Syst. Technol. 8, 816–832 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florin-Gheorghe Filip or Kauko Leiviskä Dr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Filip, FG., Leiviskä, K. (2009). Large-Scale Complex Systems. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics