Abstract
We present in this paper a novel fragmentation event model for peptide identification by tandem mass spectrometry. Most current peptide identification techniques suffer from the inaccuracies in the predicted theoretical spectrum, which is due to insufficient understanding of the ion generation process, especially the b/y ratio puzzle.
To overcome this difficulty, we propose a novel fragmentation event model, which is based on the abundance of fragmentation events rather than ion intensities. Experimental results demonstrate that this model helps improve database searching methods. On LTQ data set, when we control the false-positive rate to be 5%, our fragmentation event model has a significantly higher true positive rate (0.83) than SEQUEST (0.73). Comparison with Mascot exhibits similar results, which means that our model can effectively identify the false positive peptide-spectrum pairs reported by SEQUEST and Mascot.
This fragmentation event model can also be used to solve the problem of missing peak encountered by De Novo methods. To our knowledge, this is the first time the fragmentation preference for peptide bonds is used to overcome the missing-peak difficulty.
Availability: http://www.bioinfo.org.cn/MSMS/.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bafna, V., Edwards, N.: Scope: a probabilistic model for scoring tandem mass spectra against a peptide database. Bioinformatics 17(1), S13–S21 (2001)
Bartels, C.: Fast algorithm for peptide sequencing by mass spectroscopy. Biomed Environ Mass Spectrom 19(6), 363–368 (1990)
Chen, T., Kao, M.Y., Rush, J., Church, G.M.: A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J. Comput. Bio. 8(3), 325–337 (2001)
Craig, R., Beavis, R.C.: Tandem: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004)
Dancik, V., Addona, T.A., Clauser, K.R., Vath, J.E., Pevzner, P.A.: De novo peptide sequencing via tandem mass spectrometry. J. Comput. Bio. 6(3–4), 327–342 (1999)
Elias, J.E., Gibbon, F.D., King, O.D., Roth, F.P., Gygi, S.P.: Intensity-based protein identification by machine learning from a library of tandem bass spectra. Nat. Biotechnol. 23(2), 214–214 (2004)
Elias, J.E., Hass, W., Faherty, B.K., Gygi, S.P.: Comparative evaluation of mass spectrometry platforms used in large-scale proteomic investigations. Nature Methods 2(9), 667–675 (2005)
Eng, J.K., McCormack, A.L., Yates, J.R.: An approach to correlate tandem massspectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spect. 5, 976–989 (1994)
Resing, K.A., et al.: Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics. Anal. Chem. 76(13), 3556–3568 (2004)
Frank, A., Pevzner, P.A.: Pepnovo: de novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77(4), 964–973 (2005)
Frank, A., Tanner, S., Bafna, V., Pevzner, P.A.: Peptide sequence tags for fast database search in mass-spectrometry. J. Proteome. Res. 4(4), 1287–1295 (2005)
Hines, W.M., Falick, A.M., Burlingame, A.L., Gibson, B.W.: Patternbased algorithm for peptide sequencing from tandem high energy collision-induced dissociation mass spectra. J. Am. Soc. Mass. Spect. 3, 326–336 (1992)
Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. on Information Theory 37(1), 145–151 (1991)
Lu, B., Chen, T.: A suboptimal algorithm for de novo peptide sequencing via tandem mass spectrometry. J. Comput. Bio. 10(1), 1–12 (2003)
Lu, B., Chen, T.: Algorithms for de novo peptide sequencing via tandem mass spectrometry. Drug Discovery Today: BioSilico 2, 85–90 (2004)
Ma, B., Zhang, K., Hendrie, C., Li, M., Doherty-Kirby, A., Lajoie, G.: Peaks: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17(20), 2337–2342 (2003)
Matthiesen, R.: Methods, algorithms and tools in computational proteomics: a practical point of view. proteomics 7(16), 2815–2832 (2007)
Matthiesen, R., Bunkenborg, J., Stensballe, A., Jensen, O.N.: Database-independent, database-dependent, and extended interpretation of peptide mass spectra in vems v2.0. Proteomics 4(9), 2583–2593 (2004)
Paizs, B., Suhai, S.: Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage. J. Am. Soc. Mass. Spect. 15(1), 103–113 (2004)
Peng, J., Elias, J.E., Thoreen, J.E., Licklider, L.J., Gygi, S.P.: Evaluation of multidimensional chromotography coupled with tandem mass spectrometry (lc/lc-ms/ms) for large-scale protein anaysis: the yeast proteome. J. Proteome. Res. 2(1), 43–50 (2003)
Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567 (1999)
Schutz, F., Kapp, E.A., Simpson, R.J., Speed, T.P.: Deriving statistical models for predicting peptide tandem ms product ion intensities. Proteomics 31, 1479–1483 (2003)
Tabb, D.L., Smith, L.L., Breci, L.A., Wysocki, W.H., Yates, J.R.: Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal. Chem. 75(5), 1155–1163 (2003)
Wan, Y., Chen, T.: A Hidden Markov Model Based Scoring Function for Mass Spectrometry Database Search. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 163–173. Springer, Heidelberg (2005)
Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom 35(12), 1399–1406 (2000)
Yates, J.R.: Mass spectrometry and the age of the proteome. J. Mass Spectrom 33(1), 1–19 (1998)
Yu, C., Lin, Y., Sun, S., Cai, J., Zhang, J., Bu, D., Zhang, Z., Chen, R.: An iterative algorithm to quantify factors influencing peptide fragmentation during tandem mass spectrometry. J. Bioinform. Comput. Biol. 5(2), 297–311 (2007)
Zhang, N., Aebersold, R., Schwikowski, B.: Probid: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data. Proteomics 2(10), 1406–1412 (2002)
Zhang, Z., Sun, S., Zhu, X., Chang, S., liu, X., Yu, C., Bu, D., Chen, R.: A novel scoring schema for peptide identification by searching protein sequence databases using tandem mass spectrometry data. BMC Bioinformatics 7(222) (2006)
Zhang, Z.Q.: Prediction of low-energy collision-induced dissociation spectra of peptides. Anal. Chem. 76(14), 3908–3922 (2004)
Zhu, H., Bilgin, M., Snyder, M.: Proteomics. Annu. Rev. Biochem. 72, 783–812 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, Y., Qiao, Y., Sun, S., Yu, C., Dong, G., Bu, D. (2008). A Fragmentation Event Model for Peptide Identification by Mass Spectrometry. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-78839-3_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78838-6
Online ISBN: 978-3-540-78839-3
eBook Packages: Computer ScienceComputer Science (R0)