Skip to main content

A Bayesian Approach to Protein Inference Problem in Shotgun Proteomics

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

The protein inference problem represents a major challenge in shotgun proteomics. Here we describe a novel Bayesian approach to address this challenge that incorporates the predicted peptide detectabilities as the prior probabilities of peptide identification. Our model removes some unrealistic assumptions used in previous approaches and provides a rigorious probabilistic solution to this problem. We used a complex synthetic protein mixture to test our method, and obtained promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)

    Google Scholar 

  2. McDonald, W.H., Yates, J.R.: Shotgun proteomics: integrating technologies to answer biological questions. Curr. Opin. Mol. Ther. 5(3), 302–309 (2003)

    Google Scholar 

  3. Kislinger, T., Emili, A.: Multidimensional protein identification technology: current status and future prospects. Expert Rev. Proteomics 2(1), 27–39 (2005)

    Google Scholar 

  4. Swanson, S.K., Washburn, M.P.: The continuing evolution of shotgun proteomics. Drug Discov. Today 10(10), 719–725 (2005)

    Google Scholar 

  5. Marcotte, E.M.: How do shotgun proteomics algorithms identify proteins?. Nat. Biotechnol. 25(7), 755–757 (2007)

    Google Scholar 

  6. Nesvizhskii, A.I.: Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol 367, 87–119 (2007)

    Google Scholar 

  7. Yates, J.R., Eng, J.K., McCormack, A.L., Schieltz, D.: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67, 1426–1436 (1995)

    Google Scholar 

  8. Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567 (1999)

    Google Scholar 

  9. Craig, R., Beavis, R.C.: TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9), 1466–1467 (2004)

    Google Scholar 

  10. Nesvizhskii, A.I., Aebersold, R.: Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4(10), 1419–1440 (2005)

    Google Scholar 

  11. Nesvizhskii, A.I., Keller, A., Kolker, E., Aebersold, R.: A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17), 4646–4658 (2003)

    Google Scholar 

  12. Alves, P., Arnold, R.J., Novotny, M.V., Radivojac, P., Reilly, J.P., Tang, H.: Advancement in protein inference from shotgun proteomics using peptide detectability. In: PSB 2007: Pacific Symposium on Biocomputing, pp. 409–420. World Scientific, Singapore (2007)

    Google Scholar 

  13. Zhang, B., Chambers, M.C., Tabb, D.L.: Proteomic Parsimony through Bipartite Graph Analysis Improves Accuracy and Transparency. J Proteome Res. 6(9), 3549–3557 (2007)

    Google Scholar 

  14. Tang, H., Arnold, R.J., Alves, P., Xun, Z., Clemmer, D.E., Novotny, M.V., Reilly, J.P., Radivojac, P.: A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics 22(14), 481–488 (2006)

    Google Scholar 

  15. Lu, P., Vogel, C., Wang, R., Yao, X., Marcotte, E.M.: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25(1), 117–124 (2007)

    Google Scholar 

  16. Elias, J.E., Haas, W., Faherty, B.K., Gygi, S.P.: Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat. Methods 2(9), 667–675 (2005)(Comparative Study)

    Google Scholar 

  17. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4(3), 207–214 (2007) (Evaluation Studies)

    Google Scholar 

  18. Keller, A., Nesvizhskii, A.I., Kolker, E., Aebersold, R.: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20), 5383–5392 (2002)

    Google Scholar 

  19. Wu, F.-X., Gagne, P., Droit, A., Poirier, G.G.: RT-PSM, a real-time program for peptide-spectrum matching with statistical significance. Rapid Commun Mass Spectrom 20(8), 1199–1208 (2006)

    Google Scholar 

  20. Bern, M., Goldberg, D.: Improved ranking functions for protein and modification-site identifications. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 444–458. Springer, Heidelberg (2007)

    Google Scholar 

  21. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Google Scholar 

  22. Liu, J.S.: Monte Carlo strategies in scientific computing. Springer, Heidelberg (2002)

    Google Scholar 

  23. Brunner, E., Ahrens, C.H., Mohanty, S., Baetschmann, H., Loevenich, S., Potthast, F., Deutsch, E.W., Panse, C., de Lichtenberg, U., Rinner, O., Lee, H., Pedrioli, P.G.A., Malmstrom, J., Koehler, K., Schrimpf, S., Krijgsveld, J., Kregenow, F., Heck, A.J.R., Hafen, E., Schlapbach, R., Aebersold, R.: A high-quality catalog of the Drosophila melanogaster proteome. Nat Biotechnol. 25(5), 576–583 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y.F., Arnold, R.J., Li, Y., Radivojac, P., Sheng, Q., Tang, H. (2008). A Bayesian Approach to Protein Inference Problem in Shotgun Proteomics. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics