
Automatic Parameter Learning for Multiple
Network Alignment

Jason Flannick1, Antal Novak1, Chuong B. Do1, Balaji S. Srinivasan2,
and Serafim Batzoglou1

1 Department of Computer Science, Stanford University, Stanford, CA 94305, USA
flannick@cs.stanford.edu

2 Department of Statistics, Stanford University, Stanford, CA 94305, USA

Abstract. We developed Græmlin 2.0, a new multiple network aligner
with (1) a novel scoring function that can use arbitrary features of a
multiple network alignment, such as protein deletions, protein duplica-
tions, protein mutations, and interaction losses; (2) a parameter learning
algorithm that uses a training set of known network alignments to learn
parameters for our scoring function and thereby adapt it to any set of
networks; and (3) an algorithm that uses our scoring function to find
approximate multiple network alignments in linear time.

We tested Græmlin 2.0’s accuracy on protein interaction networks
from IntAct, DIP, and the Stanford Network Database. We show that, on
each of these datasets, Græmlin 2.0 has higher sensitivity and specificity
than existing network aligners. Græmlin 2.0 is available under the GNU
public license at http://graemlin.stanford.edu.

1 Introduction

This paper describes Græmlin 2.0, a multiple network aligner with a novel scoring
function, a fully automatic algorithm that learns the scoring function’s parame-
ters, and an algorithm that uses the scoring function to align multiple networks
in linear time. Græmlin 2.0 significantly increases accuracy when aligning pro-
tein interaction networks and aids network alignment users by automatically
adapting alignment algorithms to any network dataset.

Network alignment compares interaction networks of different species [1]. An
interaction network contains nodes, which represent genes, proteins, or other
molecules, as well as edges between nodes, which represent interactions. By
comparing networks, network alignment finds conserved biological modules or
pathways [2,3]. Because conserved modules are usually functionally important,
network alignment research growth [1] has paralleled interaction network dataset
growth [4,5].

Network alignment algorithms use a scoring function and a search algorithm.
The scoring function assigns a numerical value to network alignments—high
values indicate conservation. The search algorithm searches the set of possible
network alignments for the highest scoring network alignment.

M. Vingron and L. Wong (Eds.): RECOMB 2008, LNBI 4955, pp. 214–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Parameter Learning for Multiple Network Alignment 215

Most network alignment research has focused on pairwise network alignment
search algorithms. PathBLAST uses a randomized dynamic programming algo-
rithm to find conserved pathways [6] and uses a greedy algorithm to find con-
served protein complexes [7]. MaWISh formulates network alignment as a max-
imum weight induced subgraph problem [8]. MetaPathwayHunter uses a graph
matching algorithm to find inexact matches to a query pathway in a network
database [9], and QNet exactly aligns query networks with bounded tree width
[10]. Other network alignment algorithms use ideas behind Google’s PageRank
algorithm [11] or cast network alignment as an Integer Quadratic Programming
problem [12]. Two network aligners can perform multiple network alignment.
NetworkBLAST extends PathBLAST to align three species simultaneously [13].
Græmlin 1.0 can align more than 10 species at once [14].

Scoring function research has focused on various models of network evolution.
MaWISh [8] scores alignments with a duplication-divergence model for protein
evolution. Berg et. al. [15] perform Bayesian network alignment and model net-
work evolution with interaction gains and losses as well as protein sequence
divergences. Hirsh et. al. [16] model protein complex evolution with interaction
gains and losses as well as protein duplications.

Despite these advances, scoring functions still have several limitations. First,
existing scoring functions cannot automatically adapt to multiple network
datasets. Because networks have different edge densities and noise levels, which
depend on the experiments or integration methods used to obtain the networks,
parameters that align one set of networks accurately might align another set of
networks inaccurately.

Second, existing scoring functions use only sequence similarity, interaction
conservation, and protein duplications to compute scores. As scoring functions
use additional features such as protein deletions and paralog interaction conser-
vation, parameters become harder to hand-tune.

Finally, existing evolutionary scoring functions do not apply to multiple net-
work alignment. Existing multiple network aligners either have no evolutionary
model (NetworkBLAST) or use heuristic parameter choices with no evolutionary
basis (Græmlin 1.0).

In this paper, we first present a scoring function that addresses these limita-
tions. We next present an algorithm that uses a training set of known alignments
to automatically learn parameters for our scoring function. We then present an
algorithm that uses our scoring function to perform approximate global net-
work alignment in linear time. Finally, we present benchmarks comparing Græm-
lin 2.0, a new multiple network aligner that includes these three pieces, to existing
network aligners.

2 Methods

2.1 Network Alignment Formulation

The input to multiple network alignment is d networks G1, . . . , Gd. Each network
represents a different species and contains a set of nodes Vi and a set of edges

216 J. Flannick et al.

Fig. 1. A network alignment is an equivalence relation. In this example, four protein
interaction networks are input to multiple alignment. A network alignment partitions
proteins into equivalence classes (indicated by boxes).

Ei linking pairs of nodes. One common type of network is a protein interaction
network, in which nodes represent proteins and edges represent interactions,
either direct or indirect, between proteins.

A multiple network alignment is an equivalence relation a over the nodes
V = V1 ∪ · · · ∪ Vd. An equivalence relation is transitive and partitions V into
a set of disjoint equivalence classes [14]. A local alignment is a relation over a
subset of the nodes in V ; a global alignment [11] is a relation over all nodes in V .
Figure 1 shows an example of an alignment of four protein interaction networks.

Network alignments have a biological interpretation. Nodes in the same equiv-
alence class are functionally orthologous [17]. The subset of nodes in a local
alignment represents a conserved module [2] or pathway.

A scoring function for network alignment is a map s : A → R, where A is the
set of potential network alignments of G1, . . . , Gd. The global network alignment
problem is to find the highest-scoring global network alignment. The local network
alignment problem is to find a set of maximally-scoring local network alignments.

In this paper, we restrict attention to global network alignment. Many ideas
that apply to global network alignment also apply to local alignment. In addition,
a local alignment algorithm can use global network alignment as a first step and
then segment the global alignment into a set of local alignments [6,7].

2.2 Scoring Function

General Definition. Our scoring function computes “features” [18,19] of a net-
work alignment. Formally, we define a vector-valued feature function f : A → R

n,
which maps a global alignment to a numerical feature vector. More specifically,
we define a node feature function fN that maps equivalence classes to a feature

Automatic Parameter Learning for Multiple Network Alignment 217

vector and an edge feature function fE that maps pairs of equivalence classes to
a feature vector. We then define

f(a) =

⎡
⎢⎢⎢⎢⎣

∑
[x]∈a

fN ([x])

∑
[x],[y]∈a
[x] �=[y]

fE([x], [y])

⎤
⎥⎥⎥⎥⎦

(1)

with the first sum over all equivalence classes in the alignment a and the second
sum over all pairs of equivalence classes in a.

Given a numerical parameter vector w, the score of an alignment a is s(a) =
w · f(a). The parameter learning problem is to find w. We discuss our parameter
learning algorithm below.

The feature function isolates the biological meaning of network alignment.
Our learning and alignment algorithms make no further biological assumptions.
Furthermore, one can define a feature function for any kind of network. Our scor-
ing function therefore applies to any set of networks, regardless of the meaning
of nodes and edges.

Implementation for Protein Interaction Networks. We implemented a
feature function that computes evolutionary events. We first describe our fea-
ture function for the special case of pairwise network alignment (the align-
ment of two networks), and we then generalize our feature function to multiple

Given an alignment and a
phylogenetic tree...

.22.2

.467

.7

.89

Edge features for
each pair of equivalence classes

E. coli V. cholerae C. crescentus H. pylori

Node features for
each equivalence class

C1B2A1 B1

Paralog Mutation
based on (B1,B2) BLAST

bitscore

Edge Deletion
No edge in C. crescentus

Protein Deletion
no protein in H. pylori

Protein Duplication
two proteins in V. cholerae

Protein Mutation
based on BLAST bitscores
(C1,A1), (C1,B1), (C1,B2)

Paralog Edge Deletion
Edge present in only one of

two V. cholerae paralogs

Fig. 2. Alignment feature functions compute evolutionary events. This figure shows
the set of evolutionary events that our node and edge feature functions compute. We
use a phylogenetic tree with branch lengths to determine the events. The appendix
gives precise definitions of the evolutionary events.

218 J. Flannick et al.

network alignment. Figure 2 illustrates the evolutionary events our feature func-
tion computes.

Our pairwise node feature function computes the occurrence of the following
four evolutionary events between the species in an equivalence class:

– Protein deletion is the loss of a protein in one of the two species.
– Protein duplication is the duplication of a protein in one of the two species.
– Protein mutation is the divergence in sequence of two proteins in different

species.
– Paralog mutation is the divergence in sequence of two proteins in the same

species.

Our pairwise edge feature function computes the occurrence of the following
two evolutionary events between the species in a pair of equivalence classes:

– Edge deletion is the loss of an interaction between two pairs of proteins in
different species.

– Paralog edge deletion is the loss of an interaction between two pairs of pro-
teins in the same species.

The value of each event is one if the event occurs and zero if it does not. The
entries in the feature vector are the values of the events.

We take two steps to generalize these pairwise feature functions to multiple
network alignment. First, we use a phylogenetic tree to relate species and then
sum pairwise feature functions over pairs of species adjacent in the tree, including
ancestral species. Second, we modify the feature functions to include evolutionary
distance.

Our pairwise feature functions generalize to ancestral species pairs. We first
compute species weight vectors [20] for each ancestral species. Each species
weight vector contains numerical weights that represent the similarity of each
extant species to the ancestral species. We use these species weight vectors, to-
gether with the proteins in the equivalence class, to approximate the ancestral
proteins in the equivalence class. We then compute pairwise feature functions
between the approximate ancestral proteins. The appendix describes the exact
procedure.

In addition, our pairwise feature functions generalize to include evolutionary
distance. We augment the feature function by introducing a new feature fi × b,
where b is the distance between the species pair, for each original feature fi.
Effectively, this transformation allows features to have linear dependencies on b.
Additional terms such as fi×b2, fi×b3, . . . have more complex dependencies on b.

The appendix contains precise definitions of our feature function, as well as
precise definitions of all evolutionary events.

2.3 Parameter Learning Algorithm

Inputs. Our algorithm to find w requires a training set of known alignments.
The training set is a collection of m training examples; each training example i

specifies a set of networks {G(i) = G
(i)
1 , . . . G

(i)
d } and their correct alignment a(i).

Automatic Parameter Learning for Multiple Network Alignment 219

Our learning algorithm requires a loss function Δ : A × A → R
+. By def-

inition, Δ(a(i), a) must be 0 when a(i) = a and positive when a(i) �= a [21].
Intuitively, Δ(a(i), a) measures the distance of an alignment a from the train-
ing alignment a(i); the learned parameter vector should therefore assign higher
scores to alignments with smaller loss function values.

To train parameters for our feature function, we used a training set of KEGG
Ortholog (KO) groups [22]. Each training example contained the networks from
a set of species, with nodes removed that did not have a KO group. The correct
alignment contained an equivalence class for each KO group.

We also defined a loss function that grows as alignments diverge from the
correct alignment a(i). More specifically, let [x]a(i) denote the equivalence class
of x ∈ V (i) =

⋃
j V

(i)
j in a(i) and [x]a denote the equivalence class of x in a. We

define Δ(a(i), a) =
∑

x∈V (i) |[x]a \ [x]a(i) |, where A \ B denotes the set difference
between A and B. This loss function is proportional to the number of nodes
aligned in a that are not aligned in the correct alignment a(i).

We experimented with the natural opposite of this loss function – the number
of nodes aligned in the correct alignment a(i) that are not aligned in a. As
expected, this alternate loss function resulted in a scoring function that aligned
more nodes. We found empirically, however, that our original loss function was
more accurate.

Theory. We pose parameter learning as a maximum margin structured learning
problem. We find a parameter vector that solves the following convex program
[21]:

min
w,ξ1,...,ξm

λ

2
||w||2 +

1
m

m∑
i=1

ξi

s.t. ∀i, a ∈ A(i),w · f(a(i)) + ξi ≥ w · f(a) + Δ(a(i), a).

The constraints in this convex program encourage the learned w to satisfy a
set of conditions: each training alignment a(i) should score higher than all other
alignments a by at least Δ(a(i), a). The slack variables ξi are penalties for each
unsatisfied condition. The objective function is the sum of the penalties with a
regularization term that prevents overfitting. Given the low risk of overfitting the
few free parameters in our model, we set λ = 0 for convenience. In more complex
models with richer feature sets, overfitting can be substantially more severe
when the amount of training data is limited; employing effective regularization
techniques in such cases is a topic for future research.

We can show [21] that this constrained convex program is equivalent to the
unconstrained minimization problem

c(w) =
1
m

m∑
i=1

r(i)(w) +
λ

2
||w||2 , (2)

where r(i)(w) = maxa∈A(i)

(
w · f(a) + Δ(a(i), a)

)
− w · f(a(i)).

220 J. Flannick et al.

This objective function is convex but nondifferentiable [21]. We can therefore
minimize it with subgradient descent [23], an extension of gradient descent to
nondifferentiable objective functions.

A subgradient of equation (2) is [21]

λw +
1
m

m∑
i=1

(
f(a(i)

∗) − f(a(i))
)
,

where a
(i)
∗ = arg maxa∈A(i) w · f(a) + Δ(a(i), a) is the optimal alignment, deter-

mined by the loss function Δ(a(i), a) and current w, of G(i).

Algorithm. Based on these ideas, our learning algorithm performs subgradient
descent. It starts with w = 0. Then, it iteratively computes the subgradient g
of equation (2) at the current parameter vector w and updates w ← w − αg,
where α is the learning rate. The algorithm stops when it performs 100 iterations
that do not reduce the objective function. We set the learning rate to a small
constant (α = 0.05).

The algorithm for finding argmaxa∈A(i) w · f(a) + Δ(a(i), a) is the inference
algorithm. It is a global alignment algorithm with a scoring function augmented
by Δ. Below we present an efficient approximate global alignment algorithm that
we use as an approximate inference algorithm.

Our learning algorithm has an intuitive interpretation. At each iteration it uses
the loss function Δ and the current w to compute the optimal alignment. It then
decreases the score of features with higher values in the optimal alignment than
in the training example and increases the score of features with lower values in

Learn({G
(i)
1 , . . . , G

(i)
d , a(i)}m

i=1 : training set , α : learning rate , λ : regularization)
1 var w ← 0 // the current parameter vector
2 var c∗ ← ∞ // a measure of progress
3 var w∗ ← w // the best parameter vector so far
4 while c∗ updated in last 100 iterations
5 do
6 var g ← 0 // the current subgradient
7 var c = 0 // the current objective function
8 for i = 1 : m
9 do // sum over all training examples

10 var a
(i)
∗ = Align(G(i)

1 , . . . , G
(i)
d ,w, Δ)

11 g ← g + f(a(i)
∗) − f(a(i)) // update the subgradient

12 c ← c + w · f(a(i)
∗) + Δ(a(i), a

(i)
∗) − w · f(a(i)) // update the margin

13 g ← 1
m

g − λw; c ← 1
m

c + λ
2 ||w||2 // add in regularization

14 if c < c∗
15 then
16 c∗ ← c;w∗ = w // update the best parameter vector so far
17 w ← w − αg // update current parameter vector
18 return w∗

Fig. 3. Our parameter learning algorithm

Automatic Parameter Learning for Multiple Network Alignment 221

the optimal alignment than in the training example. Figure 3 shows our learning
algorithm.

Our learning algorithm also has performance guarantees. If the inference al-
gorithm is exact, and if the learning rate is constant, our learning algorithm
converges at a linear rate to a small region surrounding the optimal w [24,21].
A bound on convergence with an approximate inference algorithm is a topic for
further research.

2.4 Global Alignment Algorithm

Our global alignment algorithm serves two roles. It finds the highest scoring
global alignment once the optimal parameter vector has been learned, and it
performs inference as part of our learning algorithm.

We implemented a local hillclimbing algorithm for global alignment [25]. Our
alignment algorithm is approximate but efficient in practice. It requires that the
alignment feature function decomposes into node and edge feature functions as
in equation (1).

Our alignment algorithm (Figure 4) iteratively performs updates of a current
alignment. The initial alignment contains every node in a separate equivalence
class. Our algorithm then proceeds in a series of iterations. During each iteration,
it processes each node and evaluates a series of moves for each node:

– Leave the node alone.
– Create a new equivalence class with only the node.
– Move the node to another equivalence class.
– Merge the entire equivalence class of the node with another equivalence class.

For each move, our algorithm computes the alignment score before and after
the move and performs the move that increases the score the most. Once our
algorithm has processed each node, it begins a new iteration. It stops when an
iteration does not increase the alignment score.

Our alignment algorithm performs inference as part of our learning algorithm.
It can use any scoring function that decomposes as in equation (1). Therefore,
to perform inference, we need only augment the scoring function with a loss
function Δ that also decomposes into node and edge feature functions. The loss
function presented above has this property.

Our alignment algorithm depends on the set of candidate equivalence classes
to which processed nodes can move. As a heuristic, it considers as candidates
only equivalence classes with a node that has homology (BLAST [26] e-value
< 10−5) to the processed node.

Our alignment algorithm also depends on the order in which it processes
nodes. As a heuristic, it uses node scores—the scoring function with the edge
feature function set to zero—to order nodes. For each node, our algorithm com-
putes the node score change when it moves the node to each candidate equiv-
alence class. It saves the maximum node score change for each node and then
considers nodes in order of decreasing maximum node score change.

In practice, our alignment algorithm runs in linear time. To align networks
with n total nodes and m total edges, our algorithm has b iterations that each

222 J. Flannick et al.

Align(G1, . . . , Gd : set of networks ,w : parameter vector , Δ : optional loss function)
1 var a ← an alignment with one equivalence class per node
2 while true
3 do
4 var δt = 0 // the total change in score of this iteration
5 for each node p ∈

S
i Gi

6 do
7 var δ∗ ← 0 // best score
8 var o∗ ← undef // best move
9 for each move o of node p

10 do
11 var at ← o(a) // alignment after move o
12 δ ← w · f(at) + Δ(at) −

`
w · f(a) + Δ(a)

´
// change in score after move o

13 if δ > δ∗

14 then
15 δ∗ = δ; o∗ = o // new best move
16 a ← o∗(a) // do best move on alignment
17 δt ← δt + δ∗ // update total change in score of this iteration
18 if δt = 0
19 then break
20 return w

Fig. 4. Our global alignment algorithm

process n nodes. For each node our algorithm computes the change in score
when it moves the node to, on average, C candidate classes. Because the feature
function decomposes as in equation (1), to perform each score computation our
algorithm needs only to examine the candidate class, the node’s old class, and the
two classes’ neighbors. Its running time is therefore O(bC(n + m)). Empirically,
b is usually a small constant (less than 10). While C can be large, our algorithm
runs faster if it only considers candidate classes with high homology to the
processed node (BLAST e-value 	 10−5.)

3 Results

Experimental Setup. We tested our aligner on three different network datasets:
IntAct [27], DIP [28], and the Stanford Network Database [29] (SNDB). We ran
pairwise alignments of the human and mouse IntAct networks, yeast and fly DIP
networks,Escherichia coli K12 andSalmonella typhimurium LT2SNDBnetworks,
and E. coli and Caulobacter crescentus SNDB networks. We also ran a three-way
alignment of the yeast, worm, and fly DIP networks, and a six-way alignment of
E. coli, S. typhimurium, Vibrio cholerae, Campylobacter jejuni NCTC 11168, He-
licobacter pylori 26695, and C. crescentus SNDB networks.

We used KO groups [22] for our alignment comparison metrics. To compute
each metric, we first removed all nodes in the alignment without a KO group
and we then removed all equivalence classes with only one node. We then defined
an equivalence class as correct if every node in it had the same KO group.

To measure specificity, we computed two metrics:

1. the fraction of equivalence classes that were correct (Ceq)
2. the fraction of nodes that were in correct equivalence classes (Cnode)

Automatic Parameter Learning for Multiple Network Alignment 223

To measure sensitivity, we computed two metrics:

1. the total number of nodes that were in correct equivalence classes (Cor)
2. the number of equivalence classes that contained k species, for k = 2, . . . , n

We used cross validation to test Græmlin 2.0. For each set of networks, we
partitioned the KO groups into ten equal sized test sets. For each test set, we
trained Græmlin 2.0 on the KO groups not in the test set as described in the
Methods section. We then aligned the networks and computed our metrics on
only the KO groups in the test set. Our final numbers for a set of networks were
the average of our metrics over the ten test sets.

To limit biases we used cross validation to test all aligners. For aligners other
than Græmlin 2.0 we aligned the networks only one time. However, we did not
compute our metrics on all KO groups at once; instead, we computed our metrics
separately for each test set and then averaged the numbers.

As a final check that our test and training sets were independent, we com-
puted similar metrics using Gene Ontology (GO) categories [30,13] instead of
KO groups. We do not report the results of these tests because they showed no
change in the relative performance of the aligners.

We compared Græmlin 2.0 to the local aligners NetworkBLAST1 [13], MaW-
ISh [8], and Græmlin 1.0 [14], as well as the global aligner IsoRank [11] and
a global aligner (Græmlin-global) that used our new alignment algorithm with
Græmlin 1.0’s scoring function.

While we simultaneously compared Græmlin 2.0 to IsoRank and Græmlin-
global, we compared Græmlin 2.0 to each local aligner separately. Local aligners
may have lower sensitivity than global aligners simply because local aligners
only consider nodes in conserved modules while global aligners consider all nodes.
Therefore, for each comparison to a local aligner, we removed equivalence classes
in Græmlin 2.0’s output that did not contain a node in the local aligner’s output.

Performance Comparisons. Table 1 shows that Græmlin 2.0 is the most
specific aligner. Across all datasets, it produces both the highest fraction of
correct equivalence classes as well as the highest fraction of nodes in correct
equivalence classes.

Table 2 shows that Græmlin 2.0 is also the most sensitive aligner. In the SNDB
pairwise alignments, Græmlin 2.0 and IsoRank produce the most number of
nodes in correct equivalence classes. In the other tests, Græmlin 2.0 produces
the most number of nodes in correct equivalence classes.

Figure 5 shows that Græmlin 2.0 also finds more cross-species conservation
than Græmlin 1.0 and Græmlin-global. Relative to Græmlin 1.0 and Græmlin-
global, Græmlin 2.0 produces two to five times as many equivalence classes with
four, five, and six species.

1 We used the latest C++ version of NetworkBLAST available at the time of writing,
dated Dec. 1, 2007. For the eukaryotic networks, the number of homologs was too
large for this version, so we used an older Java implementation, NBlast-0.5. On the
SNDB data, the two versions produced virtually identical results.

224 J. Flannick et al.

Table 1. Græmlin 2.0 has higher specificity. As described in the text, we measured
the fraction of correct equivalence classes (Ceq) and the fraction of nodes in correct
equivalence classes (Cnode). We compared Græmlin 2.0 (Gr2.0) to NetworkBLAST
(NB), MaWISh (MW), Græmlin 1.0 (Gr), IsoRank (Iso), and Græmlin-global (GrG).
Abbreviations: eco = E. coli ; stm = S. typhimurium; cce = C. crescentus; hsa = human;
mmu = mouse; sce = yeast; dme = fly.

SNDB IntAct DIP
eco/stm eco/cce 6-way hsa/mmu sce/dme 3-way

Ceq Cnode Ceq Cnode Ceq Cnode Ceq Cnode Ceq Cnode Ceq Cnode

Local aligner comparisons
NB 0.77 0.49 0.78 0.50 – – 0.33 0.06 0.39 0.14 – –

Gr2.0 0.95 0.94 0.79 0.78 – – 0.83 0.81 0.58 0.58 – –
MW 0.84 0.64 0.77 0.54 – – 0.59 0.36 0.45 0.37 – –
Gr2.0 0.97 0.96 0.77 0.76 – – 0.88 0.86 0.90 0.91 – –
Gr 0.80 0.77 0.69 0.64 0.76 0.67 0.59 0.53 0.33 0.29 0.23 0.15

Gr2.0 0.96 0.95 0.82 0.81 0.86 0.85 0.86 0.84 0.61 0.61 0.57 0.57
Global aligner comparisons

GrG 0.86 0.86 0.72 0.72 0.80 0.81 0.64 0.64 0.68 0.68 0.71 0.71
Iso 0.91 0.91 0.65 0.65 – – 0.62 0.62 0.63 0.63 – –

Gr2.0 0.96 0.96 0.78 0.78 0.87 0.87 0.81 0.80 0.73 0.73 0.76 0.76

Table 2. Græmlin 2.0 has higher sensitivity. We measured the number of nodes in
correct equivalence classes (Cor), as described in the text. To show the number of
nodes considered in each local aligner comparison, we also measured the number of
nodes aligned by each local aligner (Tot). Methodology and abbreviations are the same
as in Table 1.

SNDB IntAct DIP
eco/stm eco/cce 6-way hsa/mmu sce/dme 3-way
Cor Tot Cor Tot Cor Tot Cor Tot Cor Tot Cor Tot

Local aligner comparisons
NB 457 1016 346 697 – – 65 1010 43 306 – –

Gr2.0 627 447 – 258 155 –
MW 1309

2050
458

841
–

–
87

241
10

27
–

–Gr2.0 1611 553 – 181 20 –
Gr 985 1286 546 847 1524 2287 108 203 35 122 27 180

Gr2.0 1157 608 2216 151 75 86
Global aligner comparisons

GrG 1496
–

720
–

2388
–

268
–

384
–

564
–Iso 2026 1014 – 306 534 –

Gr2.0 2024 1012 3578 350 637 827

These results suggest that a network aligner’s scoring function is more impor-
tant than its search algorithm. Græmlin 2.0 performs better than existing align-
ers, despite its simple search algorithm, because of its accurate scoring function.

Automatic Parameter Learning for Multiple Network Alignment 225

Number of species per equivalence class

2 3 4 5 6
Number of species

N
um

be
r

of
 c

la
ss

es
0

40
00

80
00

12
00

0

Gr GrG Gr2.0

Fig. 5. Græmlin 2.0 finds more cross-species conservation. We counted the number of
equivalence classes that contained k species for k = 2, 3, 4, 5, 6 as described in the text.
We compared Græmlin 2.0 (Gr2.0) to Græmlin 1.0 (Gr) and a global aligner (GrG)
that used our new alignment algorithm with Græmlin 1.0’s scoring function. We ran
the six-way alignment described in the text.

For pairwise alignment, Græmlin 2.0, MaWISh, Græmlin 1.0, and Græmlin-
global each ran for less than a minute, while NetworkBLAST and IsoRank ran
for over an hour. For each pairwise alignment training run, Græmlin 2.0 ran for
under ten minutes. On the six-way alignment, Græmlin 2.0, Græmlin 1.0, and
Græmlin-global each ran for under three minutes, and Græmlin 2.0 trained in
under forty-five minutes.

4 Discussion

In this paper we presented Græmlin 2.0, a multiple network aligner with a new
feature-based scoring function, an algorithm that automatically learns the scor-
ing function’s parameters, and an algorithm that uses the scoring function to
approximately align multiple networks in linear time. We implemented Græm-
lin 2.0 for protein interaction network alignment, with a feature function that
computes evolutionary events. Græmlin 2.0 has higher accuracy than existing
network alignment algorithms across multiple network datasets.

Græmlin 2.0 allows users to easily apply network alignment to their network
datasets. Our learning algorithm automatically learns parameters specific to
any set of networks. In contrast, existing alignment algorithms require manual
recalibration to adjust parameters to different datasets.

Græmlin 2.0 also extends in principle beyond protein interaction network
alignment. As more experimental data gathers and network integration algo-
rithms improve, network datasets with multiple data types will appear, such as
regulatory networks with directed edges and metabolic networks with chemi-
cal compounds [31]. With redefined feature functions, our scoring function and
parameter learning algorithm apply to these kinds of networks.

Future research can analyze our learning algorithm. In particular, Græm-
lin 2.0 might yield better results with a different learning rate or more robust
convergence criteria.

226 J. Flannick et al.

Future research can also extend our approach to local alignment. One option is
to segment a global alignment into a set of local alignments. With an appropriate
feature function and inference algorithm, our learning algorithm can learn a
scoring function for segmentation.

Acknowledgments

JF was supported in part by a Stanford Graduate Fellowship. AN was sup-
ported by NLM training grant LM-07033 and NIH grant UHG003162. CBD was
funded by an NSF Fellowship. BSS was funded by an NSF VIGRE postdoctoral
fellowship (NSF grant EMSW21-VIGRE 0502385).

References

1. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nat. Biotechnol. 24, 427–433 (2006)

2. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to mod-
ular cell biology. Nature 402, 47–52 (1999)

3. Pereira-Leal, J.B., Levy, E.D., Teichmann, S.A.: The origins and evolution of func-
tional modules: lessons from protein complexes. Philos. Trans. R. Soc. Lond. B.
Biol. Sci. 361, 507–517 (2006)

4. Uetz, P., Finley Jr., R.L.: From protein networks to biological systems. FEBS
Lett. 579, 1821–1827 (2005)

5. Cusick, M.E., Klitgord, N., Vidal, M., Hill, D.E.: Interactome: gateway into systems
biology. Hum. Mol. Genet. 14(2), 171–181 (2005)

6. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R.,
Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proc. Natl. Acad. Sci. USA 100, 11394–11399 (2003)

7. Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.M.: Identification of protein
complexes by comparative analysis of yeast and bacterial protein interaction data.
J Comput. Biol. 12, 835–846 (2005)

8. Koyuturk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama,
A.: Pairwise alignment of protein interaction networks. J Comput. Biol. 13, 182–199
(2006)

9. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of
metabolic pathways. Bioinformatics 21, 3401–3408 (2005)

10. Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: QNet: A
Tool for Querying Protein Interaction Networks. In: Speed, T., Huang, H. (eds.)
RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 1–15. Springer, Heidelberg (2007)

11. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction
networks by matching neighborhood topology. In: Speed, T., Huang, H. (eds.)
RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 16–31. Springer, Heidelberg (2007)

12. Zhenping, L., Zhang, S., Wang, Y., Zhang, X.-S., Chen, L.: Alignment of molecular
networks by integer quadratic programming. Bioinformatics 23, 1631–1639 (2007)

13. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler,
T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple
species. Proc. Natl. Acad. Sci. USA 102, 1974–1979 (2005)

Automatic Parameter Learning for Multiple Network Alignment 227

14. Flannick, J., Novak, A., Srinivasan, B.S., Batzoglou, S., McAdams, H.H.: Graemlin:
General and Robust Alignment of Multiple Large Interaction Networks. Genome
Res. 16 (2006)

15. Berg, J., Lassig, M.: Cross-species analysis of biological networks by Bayesian align-
ment. Proc. Natl. Acad Sci. USA 103, 10967–10972 (2006)

16. Hirsh, E., Sharan, R.: Identification of conserved protein complexes based on a
model of protein network evolution. Bioinformatics 23, 170–176 (2007)

17. Remm, M., Storm, C.E., Sonnhammer, E.L.: Automatic clustering of orthologs and
in-paralogs from pairwise species comparisons. J Mol. Biol. 314, 1041–1052 (2001)

18. Do, C.B., Gross, S.S., Batzoglou, S.: Contralign: Discriminative training for protein
sequence alignment. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Wa-
terman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 160–174. Springer,
Heidelberg (2006)

19. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure
prediction without physics-based models. Bioinformatics 22, 90–98 (2006)

20. Felsenstein, J.: Maximum-likelihood estimation of evolutionary trees from contin-
uous characters. Am. J. Hum. Genet. 25, 471–492 (1973)

21. Ratliff, N., Bagnell, J., Zinkevich, M. (online) subgradient methods for structured
prediction. In: Eleventh International Conference on Artificial Intelligence and
Statistics (AIStats) (2007)

22. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic.
Acids. Res. 28, 27–30 (2000)

23. Shor, N.Z., Kiwiel, K.C., Ruszcayǹski, A.: Minimization methods for non-
differentiable functions. Springer, New York (1985)

24. Nedic, A., Bertsekas, D.: Convergence rate of incremental subgradient algorithms
(2000)

25. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2003)

26. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

27. Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C.,
Dimmer, E., Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake,
J., Leroy, C., Liban, A., Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J.,
Robbe, K., Roechert, B., Thorneycroft, D., Zhang, Y., Apweiler, R., Hermjakob, H.:
IntAct–open source resource for molecular interaction data. Nucleic Acids Res. 35,
561–565 (2007)

28. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.-M., Eisenberg, D.: DIP,
the Database of Interacting Proteins: a research tool for studying cellular networks
of protein interactions. Nucleic Acids Res. 30, 303–305 (2002)

29. Srinivasan, B.S., Novak, A.F., Flannick, J.A., Batzoglou, S., McAdams, H.H.: In-
tegrated protein interaction networks for 11 microbes. In: Apostolico, A., Guerra,
C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI),
vol. 3909, pp. 1–14. Springer, Heidelberg (2006)

30. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)

228 J. Flannick et al.

31. Srinivasan, B.S., Shah, N.H., Flannick, J.A., Abeliuk, E., Novak, A.F., Batzoglou,
S.: Current progress in network research: toward reference networks for key model
organisms. Brief Bioinform (2007)

32. Altschul, S.F., Carroll, R.J., Lipman, D.J.: Weights for data related by a tree. J
Mol. Biol. 207, 647–653 (1989)

A Feature Function Definition

This section presents precise definitions of our feature function and the evolu-
tionary events that our feature function computes.

We define evolutionary events for possibly ancestral species. We assume that
we have n extant species 1, . . . , n and m ancestral species n + 1, . . . , n + m,2 all
related by a phylogenetic tree.

Each species i ∈ [1 : n + m] is represented by a species weight vector si ∈
R

n, where
∑n

j=1 si
j = 1 and si

j represents the similarity of species j ∈ [1 : n]
to species i. We can use a phylogenetic tree to compute the weight vectors
efficiently [20,32]. Each extant species j ∈ [1 : n] has a species weight vector
[sj

1 = 0, . . . , sj
j−1 = 0, sj

j = 1, sj
j+1 = 0, . . . , sj

n = 0].

We denote an equivalence class [x] as a set of proteins
⋃n

i=1 Π
[x]
i , where Π

[x]
i

is the projection of [x] to species i.

A.1 Node Feature Function

We compute the node feature function fN for an equivalence class [x] as follows.
First, we compute events for species r at the phylogenetic tree root.

Protein Present. We define p ∈ R
n as pi = 1 if Π

[x]
i �= ∅ and 0 otherwise.

– fN
1 = sr · p is the probability that species r has a protein in [x].

– fN
2 = 1 − sr · p is the probability that species r does not have a protein in

[x].

Protein Count. We define c ∈ R
n as ci = |Π [x]

i |, the number of proteins that
species i has in [x].

– fN
3 = sr ·c

sr·p is the expected number of proteins species r has in [x], given that
r has a protein.

– fN
4 = (fN

3)2

The protein present and protein count features describe the most recent common
ancestor of the extant species in the equivalence class.

Next, we compute events for all pairs of species i, j ∈ [1 : n+m], i �= j adjacent
in the tree.
2 In the appendix, the symbols n and m have different meanings than in the main

text.

Automatic Parameter Learning for Multiple Network Alignment 229

Protein Deletion. We define p(k) = sk · p as the probability that species k
has a protein in [x].

– fN
5 (i, j) = p(i) ×

(
1 − p(j)

)
+

(
1 − p(i)

)
× p(j) is the probability a protein

deletion occurs between species i and j.
– fN

6 (i, j) = p(i) × p(j) is the probability a protein deletion does not occur
between species i and j.

Protein Duplication. We define c(k) = sk·c
sk·p as the expected numbers of

proteins that species k has in [x].

– fN
7 (i, j) = |c(i) − c(j)| is the expected number of proteins gained between

species i and j.

Protein Mutation. We define a species pair weight matrix Sij ∈ R
n×n as

Sij
kl = si

ksj
l . We define B ∈ R

n×n as

Bkl =
1

|Π [x]
k ||Π [x]

l |

∑

p∈Π
[x]
k

∑

q∈Π
[x]
l

b(p, q)

where b(p, q) is the BLAST bitscore [26] of proteins p and q. Bkl is the average
bitscore among the proteins in species k and l. Bkl equals 0 if either species k
or l has no proteins in [x].

– fN
8 (i, j) = tr(SijT B), the sum of entry-wise products, is the expected bitscore

between the proteins in species i and j.
– fN

9 (i, j) = (fN
8)2

– fN
10(i, j) = (fN

8)−1

– fN
11(i, j) = (fN

8)−2

Features fN
9 through fN

1 1 allow our scoring function to include nonlinear depen-
dencies on the BLAST bitscore of the proteins.

Finally, we compute events for all extant species i ∈ [1 : n].

Paralog Mutation

– fN
12(i) = Bii is the expected average bitscore between a protein in species i

and its paralogs.
– fN

13(i, j) = (fN
12)

2

– fN
14(i, j) = (fN

12)
−1

– fN
14(i, j) = (fN

12)
−2

A.2 Edge Feature Function

We compute the edge feature function fE for equivalence classes [x] and [y] as
follows. First, we compute events for all pairs of species i, j ∈ [1 : n + m], i �= j
adjacent in the tree.

230 J. Flannick et al.

Edge Deletion. For k ∈ [1 : n], p ∈ Π
[x]
k , q ∈ Π

[y]
k , we define e(k, p, q) = 1 if

there is an edge between p and q and 0 otherwise. We then define e ∈ R
n as

ek =
1

|Π [x]
k ||Π [y]

k |

∑

p∈Π
[x]
k

∑

q∈Π
[y]
k

e(k, p, q)

which represents the average probability that species k has an edge. We define
ek as null if Π

[x]
k or Π

[y]
k is empty. We define

e(l) =

⎛
⎜⎜⎝

1∑
k:ek �=null

ek

⎞
⎟⎟⎠

∑
k:ek �=null

eksl
k l ∈ {i, j}

which represent the probabilities that species i and j have edges.

– fE
1 (i, j) = e(i)×

(
1− e(j)

)
+

(
1− e(i)

)
× e(j) is the probability that an edge

is lost between species i and j.
– fE

2 (i, j) = e(i)∗e(j) is the probability that an edge is not lost between i and
j.

Next, we compute events for all extant species i ∈ [1 : n].

Paralog Edge Deletion. We define ẽ(k, p, q) = 1, for k ∈ [1 : n], p ∈ Π
[x]
k , q ∈

Π
[y]
k as

ẽ(k, p, q) =
1

|Π [x]
k ||Π [y]

k |

∑

p′∈Π
[x]
k

q′∈Π
[y]
k

(p′,q′) �=(p,q)

e(k, p′, q′)

which represents the probability, ignoring p and q, that species k has an edge.

– fE
3 (i) =

∑
p∈Π

[x]
k

∑
q∈Π

[y]
k

(
e(i, p, q)×

(
1−ẽ(i, p, q)

)
+

(
1−e(i, p, q)

)
×ẽ(i, p, q)

)

is the average probability an edge is lost between a pair of proteins in species
i and all other pairs of proteins in species i.

– fE
4 (i) =

∑
p∈Π

[x]
k

∑
q∈Π

[y]
k

e(i, p, q) × ẽ(i, p, q) is the average probability an
edge is not lost between a pair of proteins in species i and all other pairs of
proteins in species i.

For pairwise alignment of two species s and t, the final node feature function
is

fN ([x]) =[
fN
1 , fN

2 , fN
3 , fN

4 , fN
5 (s, t), fN

6 (s, t), fN
7 (s, t), fN

8 (s, t), fN
9 (s, t), fN

10(s, t),

fN
11(s, t), f

N
12(s) + fN

12(t), f
N
13(s) + fN

13(t), f
N
14(s) + fN

14(t), f
N
15(s) + fN

15(t)
]

Automatic Parameter Learning for Multiple Network Alignment 231

and the final edge feature function is

fE([x], [y]) =
[
fE
1 (s, t), fE

2 (s, t), fE
3 (s) + fE

3 (t), fE
4 (s) + fE

4 (t)
]

For multiple alignment, the final node feature function is

fN ([x]) =[
fN
1 , fN

2 , fN
3 , fN

4 ,
∑
(i,j)

fN
5 (i, j),

∑
(i,j)

fN
5 (i, j) × b,

∑
(i,j)

fN
6 (i, j),

∑
(i,j)

fN
6 (i, j) × b,

∑
(i,j)

fN
7 (i, j),

∑
(i,j)

fN
7 (i, j) × b,

∑
(i,j)

fN
8 (i, j),

∑
(i,j)

fN
8 (i, j) × b,

∑
(i,j)

fN
8 (i, j) × b2,

∑
(i,j)

fN
8 (i, j) × b3,

∑
(i,j)

fN
9 (i, j),

∑
(i,j)

fN
9 (i, j) × b,

∑
(i,j)

fN
9 (i, j) × b2,

∑
(i,j)

fN
9 (i, j) × b3,

∑
(i,j)

fN
10(i, j),

∑
(i,j)

fN
10(i, j) × b,

∑
(i,j)

fN
10(i, j) × b2,

∑
(i,j)

fN
10(i, j) × b3,

∑
(i,j)

fN
11(i, j),

∑
(i,j)

fN
11(i, j) × b,

∑
(i,j)

fN
11(i, j) × b2,

∑
(i,j)

fN
11(i, j) × b3,

n∑
i=1

fN
12(i),

n∑
i=1

fN
13(i),

n∑
i=1

fN
14(i),

n∑
i=1

fN
15(i)

]

and the final edge feature function is

fE([x], [y]) =
� �

(i,j)

fE
1 (i, j),

�
(i,j)

fE
1 (i, j) × b,

�
(i,j)

fE
2 (i, j),

�
(i,j)

fE
2 (i, j) × b,

n�
i=1

fE
3 (i),

n�
i=1

fE
4 (i)

�

where the sums over (i, j) are taken over branches of the phylogenetic tree and
the sums i are taken over the leaves of the tree.

	Automatic Parameter Learning for Multiple Network Alignment
	Introduction
	Methods
	Network Alignment Formulation
	Scoring Function
	Parameter Learning Algorithm
	Global Alignment Algorithm

	Results
	Discussion
	Feature Function Definition
	Node Feature Function
	Edge Feature Function

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

