Skip to main content

Locating Multiple Gene Duplications through Reconciled Trees

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

We introduce the first exact and efficient algorithm for Guigó et al.’s problem that given a collection of rooted, binary gene trees and a rooted, binary species tree, determines a minimum number of locations for gene duplication events from the gene trees on the species tree. We examined the performance of our algorithm using a set of 85 genes trees that contain genes from a total of 136 plant taxa. There was evidence of large-scale gene duplication events in Populus, Gossypium, Poaceae, Asteraceae, Brassicaceae, Solanaceae, Fabaceae, and near the root of the eudicot clade. However, error in gene trees can produce erroneous evidence of large-scale duplication events, especially near the root of the species tree. Our algorithm can provide hypotheses for precise locations of large-scale gene duplication events with data from relatively few gene trees and can complement other genomic approaches to provide a more comprehensive view of ancient large-scale gene duplication events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APG II: An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141, 399–436 (2000)

    Google Scholar 

  2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. LATIN, pp. 88–94 (2000)

    Google Scholar 

  3. Blanc, G., Hokamp, K., Wolfe, K.H.: A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13, 137–144 (2003)

    Article  Google Scholar 

  4. Blanc, G., Wolfe, K.H.: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1093–1101 (2004)

    Google Scholar 

  5. Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H.: Unravelling angiosperm genome eolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003)

    Article  Google Scholar 

  6. Cannon, S.B., et al.: Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc. Natl. Acad. Sci. 103, 14959–14964 (2006)

    Article  Google Scholar 

  7. Chapman, B.A., Bowers, J.E., Schulze, S.R., Paterson, A.H.: A comparative phylogenetic approach for dating whole genome duplication events. Bioinformatics 20, 180–185 (2004)

    Article  Google Scholar 

  8. Cui, L., et al.: Widespread genome duplications throughout the history of flowering plants. Genome Res. 16, 738–749 (2006)

    Article  Google Scholar 

  9. Fellows, M., Hallet, M., Stege, U.: On the multiple gene duplication problem. ISAAC, pp. 347–356 (1998)

    Google Scholar 

  10. F.-I.P.C.: for Grapevine Genome Characterization: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Golumbic, M.R.: Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, 2nd edn., vol. 57. Academic Press, London (2004)

    Google Scholar 

  13. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163 (1979)

    Article  Google Scholar 

  14. Grant, V.: Plant speciation, 2nd edn. Columbia University Press (1981)

    Google Scholar 

  15. Guigó, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Molecular Phylogenetics and Evolution 6(2), 189–213 (1996)

    Article  Google Scholar 

  16. Guyot, Keller: Ancestral genome duplication in rice. Genome 47, 610–614 (2004)

    Article  Google Scholar 

  17. Hahn, M.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biol. 8, R141 (2007)

    Article  Google Scholar 

  18. Hartmann, S., Lu, D., Phillips, J., Vision, T.J.: Phytome: A platform for plant comparative genomics. Nucleic Acids Research 34, D724–D730 (2006)

    Article  Google Scholar 

  19. Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of mutation data matrices from protein sequences. Comp. Appl. Biosci. 8, 25–282 (1992)

    Google Scholar 

  20. Lynch, M., Conery, J.S.: The evolutionary fate and consequence of duplicate genes. Science 290, 1151–1155 (2000)

    Article  Google Scholar 

  21. Monma, C.L., Wei, V.K.: Intersection graphs of paths in a tree. Journal of Combinatorial Theory 41, 141–181 (1985)

    Article  MathSciNet  Google Scholar 

  22. Page, R.D.M., Cotton, J.A.: Vertebrate phylogenomics: reconciled trees and gene duplications. In: Pacific Symposium on Biocomputing, pp. 536–547 (2002)

    Google Scholar 

  23. Page, R.D.M., Holmes, E.C.: Molecular evolution: a phylogenetic approach. Blackwell Science, Malden (1998)

    Google Scholar 

  24. Paterson, A.H., Bowers, J.E., Chapman, B.A.: Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. 101, 9903–9908 (2004)

    Article  Google Scholar 

  25. Rensing, S.A., Ick, J., Fawcett, J.A., Lang, D., Zimmer, A., Van de Peer, Y., Reski, R.: An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol. Biol. 7, 130 (2007)

    Article  Google Scholar 

  26. Simillion, C., Vandepoele, K., Van Montagu, M.C.E., Zabeau, M., Van de Peer, Y.: The hidden duplication past of Arabidopsis thaliana. Proc. Natl. Acad. Sci. 99, 13627–13632 (2002)

    Article  Google Scholar 

  27. Stebbins, G.: Variation and evolution in plants. Columbia Univ. Press (1950)

    Google Scholar 

  28. Sterck, L., Rombauts, S., Jansson, S., Sterky, F., Rouzé, P., Van de Peer, Y.: EST data suggest that poplar is an ancient polyploidy. New Phytologist 167, 165–170 (2005)

    Article  Google Scholar 

  29. Vandepoele, K., Simillion, C., van de Peer, Y.: Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15, 2192–2202 (2003)

    Article  Google Scholar 

  30. Vision, T.J., Brown, D.G., Tanksley, S.: The origins of genome duplications in Arabidopsis. Science 290, 2114–2117 (2000)

    Article  Google Scholar 

  31. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of Computational Biology 4(2), 177–187 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burleigh, J.G., Bansal, M.S., Wehe, A., Eulenstein, O. (2008). Locating Multiple Gene Duplications through Reconciled Trees. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics