Abstract
High-accuracy protein structure modeling demands accurate and very fast side chain prediction since such a procedure must be repeatedly called at each step of structure refinement. Many known side chain prediction programs, such as SCWRL and TreePack, depend on the philosophy that global information and pairwise energy function must be used to achieve high accuracy. These programs are too slow to be used in the case when side chain packing has to be used thousands of times, such as protein structure refinement and protein design.
We present an unexpected study that local backbone information can determine side chain conformations accurately. LocalPack, our side chain packing program which is based on only local information, achieves equal accuracy as SCWRL and TreePack, yet runs 4-14 times faster, hence providing a key missing piece in our efforts to high-accuracy protein structure modeling.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Janin, J., Wodak, S., Levitt, M., Maigret, B.: The conformation of amino acid side chains in proteins. J. Mol. Biol. 125, 357–386 (1978)
Bhat, T.N., Sasisekharan, V., Vijayan, M.: An analysis of side-chain conformation in proteins. Int. J. Pept. Protein Res. 14, 170–184 (1979)
McGregor, M., Islam, S., Sternberg, M.: Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J. Mol. Biol. 198, 295–310 (1987)
Summers, N.L., Karplus, M.: Construction of side-chains in homology modeling: Application to the c-terminal lobe of rhizopuspepsin. J. Mol. Biol. 210, 785–810 (1989)
Desjarlais, J., Handel, T.: De novo design of the hydrophobic cores of proteins. Protein Science 4, 2006–2018 (1995)
Dahiyat, B., Mayo, S.: Protein design automation. Protein Science 5, 895–903 (1996)
Dunbrack, R.: Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 12, 431–440 (2002)
Xu, J.: Rapid Protein Side-Chain Packing via Tree Decomposition. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 423–439. Springer, Heidelberg (2005)
Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing. Journal of ACM 53, 533–557 (2006)
Dunbrack, R., Cohen, F.: Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Science 6, 1661–1681 (1997)
Xiang, Z., Honig, B.: Extending the accuracy limits of prediction for side-chain conformations. J. Mol. Biol. 311, 421–430 (2001)
Chandrasekaran, R., Ramachandran, G.: Studies on the conformation of amino acids. XI. Analysis of the observed side group conformations in proteins. Int. J. Protein Research 2, 223–233 (1994)
Benedetti, E., Morelli, G., Nemethy, G., Scheraga, H.: Statistical and energetic analysis of sidechain conformations in oligopeptides. Int. J. Peptide Protein Res. 22, 1–15 (1983)
Ponder, J., Richards, F.: Tertiary templates for proteins. use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775–791 (1987)
Kono, H., Doi, J.: A new method for side-chain conformation prediction using a hopfield network and reproduced rotamers. J. Comp. Chem. 17, 1667–1683 (1996)
Maeyer, M., Desmet, J., Lasters, I.: All in one: a highly detailed rotamer library improves both accuracy and speed in the modelling of sidechains by dead-end elimination. Fold Des. 2, 53–66 (1997)
Dunbrack, R., Karplus, M.: Backbone-dependent rotamer library for proteins: Application to side-chain prediction. J. Mol. Biol. 230, 543–574 (1993)
Schrauber, H., Eisenhaber, F., Argos, P.: Rotamers: To be or not to be? An analysis of amino acid sidechain conformations in globular proteins. J. Mol. Biol. 230, 592–612 (1993)
Dunbrack, R., Karplus, M.: Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nature Struct. Biol. 1, 334–340 (1994)
Liang, S., Grishin, N.: Side-chain modeling with an optimized scoring function. Protein Science 11, 322–331 (2002)
Canutescu, A., Shelenkov, A., Dunbrack, R.: A graph-theory algorithm for rapid protein side-chain prediction. Protein Science 12, 2001–2014 (2003)
Peterson, R., Dutton, P., Wand, A.: Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library. Protein Science 13, 735–751 (2004)
Chazelle, B., Kingsford, C., Singh, M.: A semidefinite programming approach to side chain positioning with new rounding strategies. Informs Journal on Computing 16, 380–392 (2004)
Kingsford, C., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 21, 1028–1036 (2005)
Jain, T., Cerutti, D., McCammon, J.: Configurational-bias sampling techinique for predicting side-chain conformations in proteins. Protein Science 15, 2029–2039 (2007)
Yanover, C., Schueler-Furman, O., Weiss, Y.: Minimizing and learning energy functions for side-chain prediction. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 381–395. Springer, Heidelberg (2007)
Roitberg, A., Elber, R.: Modeling side chains in peptides and proteins: Application of the locally enhanced sampling and the simulated annealing methods to find minimum energy functions. Chem. Phys. 95, 9277–9287 (1991)
Street, A., Mayo, S.: Intrinsic beta-sheet propensities result from van der waals interactions between side chains and the local backbone. PNAS 96, 9074–9076 (1999)
Mendes, J., Nagarajaram, H., Soares, C., Blundell, T., Carrondo, M.: Incorporating knowledge-based biases into an energy-based side-chain modeling method: Application to comparative modeling of protein structure. Biopolymers 59, 72–86 (2001)
Rohl, C., Strauss, C., Chivian, D., Baker, D.: Modeling structurally variable regions in homologous proteins with rosetta. Proteins: Structure, Function, and Bioinformatics 55, 656–677 (2004)
Holm, L., Sander, C.: Fast and simple monte carlo algorithm for side chain optimization in proteins: Application to model building by homology. Proteins: Structure, Function and Genetics 14, 213–223 (1992)
Vasquez, M.: An evaluation of discrete and continuum search techniques for conformational analysis of side-chains in proteins. Biopolymers 36, 53–70 (1995)
Tuffery, P., Etchebest, C., Hazout, S., Lavery, R.: A new approach to the rapid determination of protein side chain conformations. J. Biomol. Struct. Dyn. 8, 1267–1289 (1991)
Desmet, J., Maeyer, M., Hazes, B., Laster, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–542 (1992)
Hwang, J., Liao, W.: Side-chain prediction by neural networks and simulated annealing optimization. Protein Eng. 8, 363–370 (1995)
Lee, C., Subbiah, S.: Prediction of protein side-chain conformation by packing optimization. J. Mol. Biol. 217, 373–388 (1991)
Eriksson, O., Zhou, Y., Elofsson, A.: Side chain-positioning as an integer programming problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 128–141. Springer, Heidelberg (2001)
Akutsu, T.: NP-hardness results for protein side-chain packing. Genome Informatics 8, 180–186 (1997)
Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Eng. 15, 779–782 (2002)
Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research 2, 265–292 (2001)
Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: The 21st International Conference on Machine Learning, vol. 69, pp. 104–111 (2004)
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)
Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. NIPS 16 (2004)
Eyal, E., Najmanovich, R., Mcconkey, R.J., Enelman, M., Sobolev, V.: Importance of solvent accessibility and contact surfaces in modeling side-chain conformations in proteins. J. Comput. Chem. 25, 712–724 (2004)
Labesse, G., Colloc’h, N., Pothier, J., Mornon, J.P.: P-SEA, a new efficient assignment of secondary structure from C α trace of proteins. CABIOS 13, 291–295 (1997)
Hubbard, S.J., Thornton, J.M.: ‘NACCESS’, Computer Program, Department of Biochemistry and Molecular Biology, University College London (1993)
Dasarathy, B.V.: Nearest neighbor (NN) norms: NN pattern classification techniques. IEEE Computer Society Press, Los Alamitos (1990)
Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing). The MIT Press, Cambridge (2006)
Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical report, Taipei (2003)
Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)
Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: optimal protein threading by linear programming. Journal of Bioinformatics and Computational Biology 1, 95–117 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, J., Gao, X., Xu, J., Li, M. (2008). Rapid and Accurate Protein Side Chain Prediction with Local Backbone Information. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-78839-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78838-6
Online ISBN: 978-3-540-78839-3
eBook Packages: Computer ScienceComputer Science (R0)