Abstract
Eukaryotic splicing structures are known to involve a high degree of alternative forms derived from a premature transcript by alternative splicing (AS). With the advent of new sequencing technologies, evidence for new splice forms becomes more and more easily available—bit by bit revealing that the true splicing diversity of “AS events” often comprises more than two alternatives and therefore cannot be sufficiently described by pairwise comparisons as conducted in analyzes hitherto. Further challenges emerge from the richness of data (millions of transcripts) and artifacts introduced during the technical process of obtaining transcript sequences (noise)—especially when dealing with single-read sequences known as expressed sequence tags (ESTs). We describe a novel method to efficiently predict AS events in different resolutions (i.e., dimensions) from transcript annotations that allows for combination of fragmented EST data with full-length cDNAs and can cope with large datasets containing noise. Applying this method to estimate the real complexity of alternative splicing, we found in human thousands of novel AS events that either have been disregarded or mischaracterized in earlier works. In fact, the majority of exons that are observed as “mutually exclusive” in pairwise comparisons truly involve at least one other alternative splice form that disagrees with their mutual exclusion. We identified four major classes that contain such “optional” neighboring exons and show that they clearly differ from each other in characteristics, especially in the length distribution of the middle intron.
General Terms: Alternative Splicing, ESTs, New Sequencing Technologies, Algorithms, Graph Theory.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The human sequencing consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)
Smith, C.W., Valcarcel, J.: Alternative pre-mrna splicing: the logic of combinatorial control. Annu. Rev. Genet. 25, 381–388 (2000)
Lopez, A.J.: Alternative splicing of pre-mrna: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 32, 279–305 (1998)
Kuyumcu-Martinez, N.M., Cooper, T.A.: Mis-regulation of alternative splicing causes pathogenesis in myotonic dystrophy. Prog. Mol. Subcell. Biol. 44, 133–159 (2006)
Stamm, S., Riethoven, J.J., Le Texier, V., Gopalakrishnan, C., Kumanduri, V., Tang, Y., Barbosa-Morais, N.L., Thanaraj, T.A.: ASD: A bioinformatics resource on alternative splicing. Nucleic Acids Res. 34, D46–55 (2006)
Le Texier, V., Riethoven, J.J., Kumanduri, V., Gopalakrishnan, C., Lopez, F., Gautheret, D., Thanaraj, T.A.: AltTrans: Transcript pattern variants annotated for both alternative splicing and alternative polyadenylation. BMC Bioinformatics 7, 169 (2006)
Dralyuk, I., Brudno, M., Gelfand, M.S., Zorn, M., Dubchak, I.: ASDB: Database of alternatively spliced genes. BMC Bioinformatics 28, 296–297 (2000)
Holste, D., Huo, G., Tung, V., Burge, C.B.: HOLLYWOOD: a comparative relational database of alternative splicing. Nucleic Acids Res. 34, D56–62 (2006)
Zhou, Y., Zhou, C., Ye, L., Dong, J., Xu, H., Cai, L., Zhang, L., Wei, L.: Database and analyses of known alternatively spliced genes in plants. Genomics 82, 584–595 (2003)
Coward, E., Haas, S., Vingron, M.: SpliceNest: visualizing gene structure and alternative splicing based on EST clusters. Trends in Genetics 18, 53–55 (2002)
Huang, Y.H., Chen, Y.T., Lai, J.J., Yang, S.T., Yang, U.C.: PALS dbç: Putative alternative splicing database. Nucleic Acids Res. 30, 186–190 (2002)
Burset, M., Seledtsov, I.A., Solovyev, V.V.: SpliceDB: database of canonical and non-canonical mammalian splice sites. Nucleic Acids Res. 29, 255–259 (2001)
Ji, H., Zhou, Q., Wen, F., Xia, H., Lu, X., Li, Y.: AsMamDB: An alternative splice database of mammals. Nucleic Acids Res. 29, 260–263 (2001)
Modrek, B., Resch, A., Grasso, C., Lee, C.: Genome-wide analysis of alternative splicing using human expressed sequence data. Nucleic Acids Res. 29, 2850–2859 (2001)
Huang, H.D., Horng, J.T., Lee, C.C., Liu, B.J.: Prosplicer: A database of putative alternative splicing information derived from protein, mrna and expressed sequence tag sequence data. Genome Biol. 4, R29 (2003)
Bhasi, A., Pandey, R.V., Utharasamy, S.P., Senapathy, P.: ASD: a bioinformatics resource on alternative splicing. Boinformatics 23, 1815–1823 (2007)
Nagasaki, H., Arita, M., Nishizawa, T., Suwa, M., Gotoh, O.: Species-specific variation of alternative splicing and transcriptional initiation in six eukaryotes. Gene 364, 53–62 (2005)
Kim, E., Magen, A., Ast, G.: Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35, 125–131 (2007)
Yandell, M., Mungall, C.J., Smith, C., Prochnik, S., Kaminker, J., Hartzell, G., Lewis, G.M., Rubin, S.: Large-scale trends in the evolution of gene structures within 11 animal genomes. PLoS Comput. Biol., vol. 2, p. 15 (2006)
Grasso, C., Modrek, B., Xing, Y., Lee, C.: Genome-wide detection of alternative splicing in expressed sequences using partial order multiple sequence alignment graphs. In: Pac. Symp. Biocomput., pp. 29–41 (2004)
Zavolan, M., van Nimwegen, E.: The types and prevalence of alternative splice forms. Curr. Opin. Struct. Biol. 16, 1–6 (2006)
Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M., Miller, W.: A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res. 8, 967–974 (1998)
Kent, W.J.: BLAT - the blast-like alignment tool. Genome Res. 12, 656–664 (2002)
Bonizzoni, P., Rizzi, R., Pesole, G.: ASPIC: a novel method to predict the exon-intron structure of a gene that is optimally compatible to a set of transcript sequences. BMC Bioinformatics 6, 244 (2005)
Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007)
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank. Nucleic Acids Res. 35, D21–D25 (2007)
Weber, A.P., Weber, K.L., Carr, K., C.,, Wilkerson, O.J.B.: Sampling the arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144, 32–42 (2007)
Ruan, Y., Ooi, H.S., Choo, S.W., Chiu, K.P., Zhao, X.D., Srinivasan, K.G., Yao, F., Choo, C.Y., Liu, J., Ariyaratne, P., Bin, W.G.W., Kuznetsov, V.A., Shahab, A., Sung, W.-K., Bourque, G., Palanisamy, N., Wei, C.-L.: Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using paired-end ditags (pets). Genome Res. 17, 828–838 (2007)
Sugnet, C.W., Kent, W.J., Ares, M., Haussler, D.: Transcriptome and genome conservation of alternative splicing events in humans and mice. In: Pac. Symp. Biocomput., pp. 66–77 (2004)
Heber, S., Alekseyev, M., Sing-Hoi, S., Pevzner, P.: Splicng graphs and EST assembly problem. Bioinformatics 18, 181–188 (2002)
Gusfield, D., Bansal, V.: A fundamental decomposition theorem for phylogenetic networks and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)
Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinformatics and Computational Biology 2, 173–213 (2004)
University of California Santa Cruz (UCSC) Genome Browser, http://genome.ucsc.edu
Boguski, M.S., Lowe, T.M., Tolstoshev, C.M.: dbEST–database for ”expressed sequence tags. Nat. Genet. 4, 332–333 (1993)
Human Genome Sequencing Consortium, http://genome.ucsc.edu/goldenPath/labs.html
Mouse Genome Sequencing Consortium, http://www.ensembl.org/Mus_musculus/credits.html
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2007) ISBN 3-900051-07-0
Smith, C.W., Nadal-Ginard, B.: Mutually exclusive splicing of alpha-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 56, 749–758 (1989)
Zhuang, Y., Leung, H., Weiner, A.M.: The natural 5’ splice site of simian virus 40 large t antigen can be improved by increasing the base complementarity to u1 rna. Mol. Cell Biol. 7, 3018–3020 (1987)
Kuo, H.C., Nasim, F.H., Grabowski, P.J.: Control of alternative splicing by the differential binding of u1 small nuclear ribonucleoprotein particle. Science 251, 1045–1050 (1991)
Mullen, M.P., Smith, C.W.J., Patton, J.G., Nadal-Girnard, B.: α-tropomyosin mutually exclusive exon selection: competition between branchpoint/polypyrimidine tracts determines default exon choice. Genes Dev. 5, 642–655 (1991)
Fu, X.Y., Ge, H., Manley, J.L.: In vitro splicing of mutually exclusive exons from the chicken β-tropomyosin gene: role of the branch point location and very long pyrimidine stretch. EMBO J. 7, 809–817 (1988)
Noble, J.C., Pan, Z.Q., Prives, C., Manley, J.L.: Splicing of sv40 early pre-mrna to large t and small t mrnas utilizes different patterns of lariat branch sites. Cell 27, 227–236 (1987)
Noble, J.C., Prives, C., Manley, J.L.: Alternative splicing of sv40 early pre-mrna is determined by branch site selection. Genes Dev. 2, 1460–1475 (1988)
Gattoni, R., Schmitt, P., Stevenin, J.: In vitro splicing of adenovirus e1a transcripts: characterization of novel reactions and of multiple branch points abnormally far from the 3’ splice site. Nucleic Acids Res. 16, 2389–2409 (1988)
Helfman, D.M., Ricci, W.M.: Branch point selection in alternative splicing of tropomyosin pre-mrnas. Nucleic Acids Res. 17, 5633–5650 (1989)
Goux-Pelletan, M., Libri, D., d’Aubenton-Carafa, Y., Fiszman, M., Brody, E., Marie, J.: In vitro splicing of mutually exclusive exons from the chicken β-tropomyosin gene: role of the branch point location and very long pyrimidine stretch. EMBO J. 9, 241–249 (1990)
Helfman, D.M., Roscigno, R.F., Mulligan, G.J., Finn, L.A., Weber, K.S.: Identification of two distinct intron elements involved in alternative splicing of the β-tropomyosin pre-mRNA. Genes Dev. 4, 98–110 (1990)
Reed, R., Maniatis, T.: The role of the mammalian branchpoint sequence in pre-mrna splicing. Genes Dev. 2, 1268–1276 (1988)
Zhuang, Y.A., Goldstein, A.M., Weiner, A.M.: Uacuaac is the preferred branch site for mammalian mrna splicing. Proc. Natl. Acad. Sci. USA 86, 2752–2756 (1989)
Libri, D., Goux-Pelletan, M., Brody, E., Fiszman, M.Y.: Exon as well as intron sequences are cis-regulating elements for the mutually exclusive alternative splicing of the β tropomyosin gene. Mol. Cell Biol. 10, 5036–5046 (1990)
Reed, R., Maniatis, T.: A role for exon sequences and splice-site proximity in splice-site selection. Cell 46, 681–690 (1986)
Mardon, H.J., Sebastio, G., Baralle, F.E.: A role for exon sequences in alternative splicing of the human fibronectin gene. Nucleic Acids Res. 15, 7725–7733 (1987)
Somasekhar, M.B., Mertz, J.E.: Exon mutations that affect the choice of splice sites used in processing the sv40 late transcripts. Nucleic Acids Res. 13, 5591–5609 (1985)
Helfman, D.M., Ricci, W.M., Finn, L.A.: Alternative splicing of tropomyosin pre-mrnas in vitro and in vivo. Genes Dev. 2, 1627–1638 (1988)
Cooper, T.A., Ordahl, C.P.: Nucleotide substitutions within the cardiac troponin t alternative exon disrupt pre-mrna alternative splicing. Nucleic Acids Res. 17, 7905–7921 (1989)
Hampson, R.K., La Follette, L., Rottman, F.M.: Alternative processing of bovine growth hormone mRNA is influenced by downstream exon sequences. Mol. Cell Biol. 9, 1604–1610 (1989)
Streuli, M., Saito, H.: Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J. 8, 787–796 (1989)
Black, D.L.: Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-neuronal cells? Genes Dev. 5, 389–402 (1991)
Libri, D., Piseri, A., Fiszman, M.Y.: Exon as well as intron sequences are cis-regulating elements for the mutually exclusive alternative splicing of the β tropomyosin gene. Science 252, 1842–1845 (1991)
Ge, H., Manley, J.L.: A protein factor, asf, controls cell-specific alternative splicing of sv40 early pre-mrna in vitro. cell 13, 25–34 (1990)
Krainer, A.R., Conway, G.C., Kozak, D.: The essential pre-mrna splicing factor sf2 influences 5’ splice site selection by activating proximal sites. Cell 13, 35–42 (1990)
Foissac, S., Sammeth, M.: Astalavista: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res. 35, W297–W299 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sammeth, M., Valiente, G., Guigó, R. (2008). Bubbles: Alternative Splicing Events of Arbitrary Dimension in Splicing Graphs. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-78839-3_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78838-6
Online ISBN: 978-3-540-78839-3
eBook Packages: Computer ScienceComputer Science (R0)