Skip to main content

A Combined Expression-Interaction Model for Inferring the Temporal Activity of Transcription Factors

  • Conference paper
  • 1350 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

Methods suggested for reconstructing regulatory networks can be divided into two sets based on how the activity level of transcription factors (TFs) is inferred. The first group of methods relies on the expression levels of TFs assuming that the activity of a TF is highly correlated with its mRNA abundance. The second treats the activity level as unobserved and infers it from the expression of the genes the TF regulates. While both types of methods were successfully applied, each suffers from drawbacks that limit their accuracy. For the first set, the assumption that mRNA levels are correlated with activity is violated for many TFs due to post-transcriptional modifications. For the second, the expression level of a TF which might be informative is completely ignored. Here we present the Post-Transcriptional Modification Model (PTMM) that unlike previous methods utilizes both sources of data concurrently. Our method uses a switching model to determine whether a TF is transcriptionally or post-transcriptionally regulated. This model is combined with a factorial HMM to fully reconstruct the interactions in a dynamic regulatory network. Using simulated and real data we show that PTMM outperforms the other two approaches discussed above. Using real data we also show that PTMM can recover meaningful TF activity levels and identify post-transcriptionally modified TFs, many of which are supported by other sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spellman, P.T., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273–3297 (2004)

    Google Scholar 

  2. Panda, S., et al.: Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3), 307–320 (2002)

    Article  MathSciNet  Google Scholar 

  3. Nau, G., et al.: Human macrophage activation programs induced by bacterial pathogens. PNAS 99, 1503–1508 (2002)

    Article  Google Scholar 

  4. Arbeitman, M., et al.: Gene expression during the life cycle of drosophila melanogaster. Science 298, 2270–2275 (2002)

    Article  Google Scholar 

  5. Theuns, J., et al.: Transcriptional regulation of Alzheimer’s disease genes: implications for susceptibility. Hum. Mol. Genet. 9, 2383–2394 (2000)

    Article  Google Scholar 

  6. Beer, M., et al.: Predicting gene expression from sequence. Cell 117(2), 185–198 (2004)

    Article  MathSciNet  Google Scholar 

  7. Zou, M., et al.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71–79 (2005)

    Article  Google Scholar 

  8. Tanay, A., et al.: Computational expansion of genetic networks. Bioinformatics 17, S270–S278 (2001)

    Google Scholar 

  9. D’haeseleer, P., et al.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)

    Article  Google Scholar 

  10. Segal, E., et al.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)

    Article  Google Scholar 

  11. Sabatti, et al.: Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics 22, 739–746 (2006)

    Article  Google Scholar 

  12. Ernst, J., et al.: Reconstructing dynamic regulatory maps. Nature-EMBO Molecular Systems Biology 3, 74 (2007)

    Google Scholar 

  13. Ideker, T., et al.: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001)

    Article  Google Scholar 

  14. Kannan, et al.: A Bayesian Model That Links Microarray mRNA Measurements to Mass Spectrometry Protein Measurements. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 325–338. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Bose, S., et al.: Genetic factors that regulate the attenuation of the general stress response of yeast. Genet. 169, 1215–1226 (2005)

    Article  Google Scholar 

  16. Washburn, M.P., et al.: Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomycs cerevisiae. PNAS 100, 3107–3112 (2003)

    Article  Google Scholar 

  17. Nachman, I., et al.: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(Suppl 1), I248–I256 (2004)

    Article  Google Scholar 

  18. Ghahramani, Z., et al.: Factorial hidden Markov models. Machine Learning 29, 245–273 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, L., et al.: Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 23, 1486–1494 (2007)

    Article  Google Scholar 

  20. Harbison, C.T., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    Article  Google Scholar 

  21. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Statist. Soc. B. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Hu, Z., et al.: Genetic reconstruction of a functional transcriptional regulatory network. Nat. Genet. 39, 683–687 (2007)

    Article  Google Scholar 

  23. Xing, E., et al.: A generalized mean field algorithm for variational inference in exponential families. In: Proceedings of UAI (2003)

    Google Scholar 

  24. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  25. Murphy, K.: Dynamic bayesian networks: Representation, inference and learning. Ph.D. Thesis, University of California, Berkeley (2002)

    Google Scholar 

  26. Coleman, T.F., et al.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization 6, 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Supporting website, http://www.cs.cmu.edu/~yanxins/ptmm

  28. MacIsaac, K., et al.: An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113 (2006)

    Article  Google Scholar 

  29. Workman, C.T., et al.: A systems approach to mapping DNA damage response pathways. Science 312, 1054–1059 (2006)

    Article  Google Scholar 

  30. Garreau, H., et al.: Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146, 2113–2120 (2000)

    Google Scholar 

  31. Gorner, W., et al.: Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes. Dev. 12, 586–597 (1998)

    Article  Google Scholar 

  32. Moll, T., et al.: The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743–758 (1991)

    Article  Google Scholar 

  33. Pic-Taylor, A., et al.: Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol. Cell. Biol. 24, 10036–10046 (2004)

    Article  Google Scholar 

  34. Tsang, J.S., et al.: Phosphorylation influences the binding of the yeast RAP1 protein to the upstream activating sequence of the PGK gene. Nucl. Acids Res. 18, 7331–7337 (1990)

    Article  Google Scholar 

  35. Mitchell, T., et al.: Hidden process models. In: Proceedings of ICML (2006)

    Google Scholar 

  36. Shi, Y., et al.: Continuous hidden process model for time series expression experiments. Bioinformatics 23, I459–I467 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, Y., Simon, I., Mitchell, T., Bar-Joseph, Z. (2008). A Combined Expression-Interaction Model for Inferring the Temporal Activity of Transcription Factors. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics