Abstract
We study a fragment of propositional modal logics using the universal modality given by a restriction on the modal depth of modal formulas.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balbiani, P., Tinchev, T., Vakarelov, D.: Dynamic logics of the region-based theory of discrete spaces. Journal of Applied Non-Classical Logics 17 (2007)
Balbiani, P., Tinchev, T., Vakarelov, D.: Modal logics for region-based theories of space. Fundamenta Informaticæ 81 (2007)
Chagrov, A., Rybakov, M.: How many variables does one need to prove PSPACE-hardness of modal logics? In: Balbiani, P., Suzuki, N.-Y., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 4, King’s College (2003)
Chang, C., Keisler, H.: Model Theory. Elsevier, Amsterdam (1990)
Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: a proximity approach – I. Fundamenta Informaticæ 74 (2006)
Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: proximity approach – II. Fundamenta Informaticæ 74 (2006)
Düntsch, I., Winter, M.: A representation theorem for Boolean contact algebras. Theoretical Computer Science 347 (2005)
Halpern, J.: The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artificial Intelligence 75 (1995)
Kleene, S.: Introduction to Metamathematics. North-Holland, Amsterdam (1971)
Naimpally, S., Warrack, B.: Proximity Spaces. Cambridge University Press, Cambridge (1970)
Nguyen, L.: On the complexity of fragments of modal logics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, King’s College (2005)
Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
Stell, J.: Boolean connection algebras: a new approach to the region connection calculus. Artificial Intelligence 122 (2000)
Vakarelov, D., Dimov, G., Düntsch, I., Bennett, B.: A proximity approach to some region-based theory of space. Journal of Applied Non-Classical Logics 12 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Balbiani, P., Tinchev, T. (2008). Boolean Logics with Relations. In: Berghammer, R., Möller, B., Struth, G. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2008. Lecture Notes in Computer Science, vol 4988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78913-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-78913-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78912-3
Online ISBN: 978-3-540-78913-0
eBook Packages: Computer ScienceComputer Science (R0)