Skip to main content

Mining Spatio-Temporal Data at Different Levels of Detail

  • Chapter
The European Information Society

Abstract

In this paper we propose a methodology for mining very large spatio-temporal datasets. We propose a two-pass strategy for mining and manipulating spatio-temporal datasets at different levels of detail (i.e., granularities). The approach takes advantage of the multi-granular capability of the underlying spatio-temporal model to reduce the amount of data that can be accessed initially. The approach is implemented and applied to real-world spatio-temporal datasets. We show that the technique can deal easily with very large datasets without losing the accuracy of the extracted patterns, as demonstrated in the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham T., Roddick J.F. (1999) Incremental Meta-Mining from Large Temporal Datasets. Advances in Database Technologies, In Proc. of the 1st Int’l Workshop on Data Warehousing and Data Mining, Springer-Verlag Berlin. LNCS 1552:41-54.

    Google Scholar 

  • Balley S., Parent C., Spaccapietra S. (2004) Modelling Geographic Data with Multiple Representations. International Journal of Geographical Information Science, Taylor & Francis. 18(4):327-352.

    Article  Google Scholar 

  • Bertino E., Cuadra D., Martìnez P. (2005) An Object-Relational Approach to the Representation of Multi-granular Spatio-Temporal Data. In Proc. of the 17th Int’l Conf. on Advanced Information Systems Engineering, Springer-Verlag Berlin. LNCS 3520:119-134.

    Google Scholar 

  • Bertolotto M. (1998) Geometric Modeling of Spatial Entities at Multiple Levels of Resolution. Ph.D. Thesis, Università degli Studi di Genova, Italy.

    Google Scholar 

  • Bertolotto M., Di Martino S., Ferrucci F., Kechadi T. (2007) A Visualisation System for Collaborative Spatio-Temporal Data Mining. International Journal of Geographical Information Science, Taylor & Francis. 21(7): 895-906.

    Article  Google Scholar 

  • Bettini C., Jajodia S., Wang X. (2000) Time Granularities in Databases, Data Mining, and Temporal Reasoning, Springer-Verlag Berlin.

    Google Scholar 

  • Bittner T. (2002) Reasoning about qualitative spatio-temporal relations at multiple levels of granularity. In Proc. of the 15th European Conf. on Artificial Intelligence, IOS Press. 317-321.

    Google Scholar 

  • Camossi E., Bertolotto M., Bertino E. (2006) A multigranular Object-oriented Framework Supporting Spatio-temporal Granularity Conversions. International Journal of Geographical Information Science. Taylor & Francis. 20(5): 511-534.

    Google Scholar 

  • Cattel R., Barry D., Berler M., Eastman J., Jordan D., Russel C., Schadow O., Stanienda T., Velez F (1999). The Object Database Standard: ODMG 3.0. Morgan-Kaufmann.

    Google Scholar 

  • Claramunt C., Thériault M. (1995) Managing Time in GIS: an event oriented approach. In Proc. of the Int’l Workshop on Temporal Databases: Recent Advances in Temporal Databases, Springer-Verlag. 23-42.

    Google Scholar 

  • Claramunt C., Jiang B. (2000) Hierarchical Reasoning in Time and Space. In Proc. of the 9th Int’l Symposium on Spatial Data Handling. 41-51.

    Google Scholar 

  • Compieta P., Di Martino S., Bertolotto M., Ferrucci F., Kechadi T. (2007) Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing, Elsevier. 18(3):255-279.

    Article  Google Scholar 

  • Chen C.X, Zaniolo C. (2000) SQLST: A Spatio-Temporal Data Model and Query Language. In Proc. of 19th Int’l Conf. on Conceptual Modeling / the Entity Relational Approach. Springer-Verlag Berlin. LNCS 1920:96-111.

    Google Scholar 

  • Ester M., Kriegel H.-P., Sander J., Xu X. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proc. of the 2nd Int’l Conf. on Knowledge Discovery and Data Mining. 226-231.

    Google Scholar 

  • Fayyad U.M., Grinstein G.G. (2001) Introduction. Information Visualization in Data Mining and Knowledge Discovery, Los Altos, CA: Morgan Kaufmann. 1-17.

    Google Scholar 

  • Fonseca F., Egenhofer M.J, Davis C., Cãmara G. (2002) Semantic Granularity in Ontology Driven Geographic Information Systems. Annals of Mathematics and Artificial Intelligence, Special Issue on Spatial and Temporal Granularity. 36(1-2).

    Google Scholar 

  • Griffiths T., Fernandes A.A.A., Paton N.W., Barr R. (2004). The Tripod spatio-historical data model. Data Knowledge and Engineering, Elsevier. 49(1): 23-65.

    Article  Google Scholar 

  • Güting R.H., Bhölen M.H., Erwig M., Jensen C.S., Lorentzos N.A., Shneider M., Vazirgiannis M. (2000) A Foundation for Representing and Querying Moving Objects. ACM Transaction On Database Systems, 25:1-42.

    Article  Google Scholar 

  • Hornsby K., Egenhofer M.J. (2002) Modeling Moving Objects over Multiple Granularities. Annals of Mathematics and Artificial Intelligence. Special Issue on Spatial and Temporal Granularity. Kluwer Academic Press. 36(1-2):177-194.

    Google Scholar 

  • Hurtado C.A., Mendelzon A.O. (2001) Reasoning about summarizability in Heterogeneous Multidimensional Schemas. In Proc. of the 8th Int’l Conf. on Database Theory. 375-389.

    Google Scholar 

  • Huang B., Claramunt C. (2002) STOQL: An ODMG-based Spatio-Temporal Object Model and Query Language. In Proc. of the 10th Int’l Symposium on Spatial Data Handling, Springer-Verlag Berlin. 225-237.

    Google Scholar 

  • Khatri V., Ram S., Snodgrass R.T., O’Brien G. (2002) Supporting User Defined Granularities and Indeterminacy in a Spatio-temporal Conceptual Model. Annals of Mathematics and Artificial Intelligence. Special Issue on Spatial and Temporal Granularity, 36(1):195-232.

    Google Scholar 

  • Koperski K.(1999) A Progressive Refinement Approach to Spatial Data Mining. Ph.D. Thesis, Simon Fraser University, Canada.

    Google Scholar 

  • Kulik L., Duckham M., Egenhofer M.J. (2005) Ontology driven Map Generalization. Journal of Visual Language and Computing, 16(3):245-267.

    Article  Google Scholar 

  • Langran G. (1992) Time in Geographic Information Systems. Taylor & Francis.

    Google Scholar 

  • Li T., Li Q., Zhu S., Ogihara M. (2002) A Survey on Wavelet Applications in Data Mining. ACM SIGKDD Explorations Newsletter. 4(2):49-68.

    Article  Google Scholar 

  • Mennis J., Liu J.W. (2005) Mining Association Rules in Spatio-Temporal Data: An Analysis of Urban Socioeconomic and Land Cover Change. Transactions in GIS, Blackwell Publishing. 9(1):5–17.

    Google Scholar 

  • Muller J-C., Lagrange J.P., Weibel R. (eds.) (1995) GIS and Generalization: methodology and practice. Taylor and Francis.

    Google Scholar 

  • National Hurricane Center (2003), Tropical Cyclone Report: Hurricane Isabel, http://www.tpc.ncep.noaa.gov/2003isabel.shtml.

    Google Scholar 

  • Ng R.T., Han J. (1994) Efficient and Effective Clustering Methods for Spatial Data Mining. In Proc. of the 20th Int’l Conf. on Very Large Data Bases. 144-155.

    Google Scholar 

  • ORACLEâ„¢ (2008), Oracle Corp. http://www.oracle.com. Last date accessed: 01/2008.

    Google Scholar 

  • PostgreSQL (2008), PostgreSQL Inc. http://www.postgresql.org. Last date accessed: 01/2008.

    Google Scholar 

  • Roddick J.F., Lees B.G. (2001) Paradigms for Spatial and Spatio-Temporal Data Mining. Geographic Data Mining and Knowledge Discovery. Taylor and Francis. 33-50.

    Google Scholar 

  • Saalfeld A. (1999) Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartography and Geographic Information Science. 26(1):7-18.

    Article  Google Scholar 

  • Shahabi C., Chung S., Safar M., Hajj G. (2001) 2D TSA-tree: A Wavelet-Based Approach to Improve the Efficiency of MultiLevel Spatial Data Mining. In Proc. of the 13th Int’l Conf. on Scientific and Statistical Database Management. 59-68.

    Google Scholar 

  • Stell J.G., Worboys M. (1998) Stratified Map Spaces: A Fomal Basis for Multi-Resolution Spatial Databases. In Proc. of the 8th Int’l Symposium on Spatial Data Handling. 180-189.

    Google Scholar 

  • Tsoukatos I., Gunopulos D. (2001) Efficient Mining of Spatiotemporal Patterns. In Proc. of the 7th Int’l Symposium on Spatial and Temporal Databases. LNCS 2121:425-442.

    Google Scholar 

  • Tryfona N., Jensen C.S. (1999) Conceptual Modeling for Spatiotemporal Applications. Geoinformatica, Springer Netherlands. 3(3):245-268.

    Google Scholar 

  • Vangenot C. (2001) Supporting Decision-Making with Alternative Data Representations. Journal of Geographic Information and Decision Anaysis. 5(2):66-82.

    Google Scholar 

  • Worboys M. (1994) A Unified Model for Spatial and Temporal Information. The Computer Journal, Oxford University Press. 37(1):26-34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Camossi, E., Bertolotto, M., Kechadi, T. (2008). Mining Spatio-Temporal Data at Different Levels of Detail. In: Bernard, L., Friis-Christensen, A., Pundt, H. (eds) The European Information Society. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78946-8_12

Download citation

Publish with us

Policies and ethics