Abstract
In this paper we propose a methodology for mining very large spatio-temporal datasets. We propose a two-pass strategy for mining and manipulating spatio-temporal datasets at different levels of detail (i.e., granularities). The approach takes advantage of the multi-granular capability of the underlying spatio-temporal model to reduce the amount of data that can be accessed initially. The approach is implemented and applied to real-world spatio-temporal datasets. We show that the technique can deal easily with very large datasets without losing the accuracy of the extracted patterns, as demonstrated in the experimental results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abraham T., Roddick J.F. (1999) Incremental Meta-Mining from Large Temporal Datasets. Advances in Database Technologies, In Proc. of the 1st Int’l Workshop on Data Warehousing and Data Mining, Springer-Verlag Berlin. LNCS 1552:41-54.
Balley S., Parent C., Spaccapietra S. (2004) Modelling Geographic Data with Multiple Representations. International Journal of Geographical Information Science, Taylor & Francis. 18(4):327-352.
Bertino E., Cuadra D., Martìnez P. (2005) An Object-Relational Approach to the Representation of Multi-granular Spatio-Temporal Data. In Proc. of the 17th Int’l Conf. on Advanced Information Systems Engineering, Springer-Verlag Berlin. LNCS 3520:119-134.
Bertolotto M. (1998) Geometric Modeling of Spatial Entities at Multiple Levels of Resolution. Ph.D. Thesis, Università degli Studi di Genova, Italy.
Bertolotto M., Di Martino S., Ferrucci F., Kechadi T. (2007) A Visualisation System for Collaborative Spatio-Temporal Data Mining. International Journal of Geographical Information Science, Taylor & Francis. 21(7): 895-906.
Bettini C., Jajodia S., Wang X. (2000) Time Granularities in Databases, Data Mining, and Temporal Reasoning, Springer-Verlag Berlin.
Bittner T. (2002) Reasoning about qualitative spatio-temporal relations at multiple levels of granularity. In Proc. of the 15th European Conf. on Artificial Intelligence, IOS Press. 317-321.
Camossi E., Bertolotto M., Bertino E. (2006) A multigranular Object-oriented Framework Supporting Spatio-temporal Granularity Conversions. International Journal of Geographical Information Science. Taylor & Francis. 20(5): 511-534.
Cattel R., Barry D., Berler M., Eastman J., Jordan D., Russel C., Schadow O., Stanienda T., Velez F (1999). The Object Database Standard: ODMG 3.0. Morgan-Kaufmann.
Claramunt C., Thériault M. (1995) Managing Time in GIS: an event oriented approach. In Proc. of the Int’l Workshop on Temporal Databases: Recent Advances in Temporal Databases, Springer-Verlag. 23-42.
Claramunt C., Jiang B. (2000) Hierarchical Reasoning in Time and Space. In Proc. of the 9th Int’l Symposium on Spatial Data Handling. 41-51.
Compieta P., Di Martino S., Bertolotto M., Ferrucci F., Kechadi T. (2007) Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing, Elsevier. 18(3):255-279.
Chen C.X, Zaniolo C. (2000) SQLST: A Spatio-Temporal Data Model and Query Language. In Proc. of 19th Int’l Conf. on Conceptual Modeling / the Entity Relational Approach. Springer-Verlag Berlin. LNCS 1920:96-111.
Ester M., Kriegel H.-P., Sander J., Xu X. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proc. of the 2nd Int’l Conf. on Knowledge Discovery and Data Mining. 226-231.
Fayyad U.M., Grinstein G.G. (2001) Introduction. Information Visualization in Data Mining and Knowledge Discovery, Los Altos, CA: Morgan Kaufmann. 1-17.
Fonseca F., Egenhofer M.J, Davis C., Cãmara G. (2002) Semantic Granularity in Ontology Driven Geographic Information Systems. Annals of Mathematics and Artificial Intelligence, Special Issue on Spatial and Temporal Granularity. 36(1-2).
Griffiths T., Fernandes A.A.A., Paton N.W., Barr R. (2004). The Tripod spatio-historical data model. Data Knowledge and Engineering, Elsevier. 49(1): 23-65.
Güting R.H., Bhölen M.H., Erwig M., Jensen C.S., Lorentzos N.A., Shneider M., Vazirgiannis M. (2000) A Foundation for Representing and Querying Moving Objects. ACM Transaction On Database Systems, 25:1-42.
Hornsby K., Egenhofer M.J. (2002) Modeling Moving Objects over Multiple Granularities. Annals of Mathematics and Artificial Intelligence. Special Issue on Spatial and Temporal Granularity. Kluwer Academic Press. 36(1-2):177-194.
Hurtado C.A., Mendelzon A.O. (2001) Reasoning about summarizability in Heterogeneous Multidimensional Schemas. In Proc. of the 8th Int’l Conf. on Database Theory. 375-389.
Huang B., Claramunt C. (2002) STOQL: An ODMG-based Spatio-Temporal Object Model and Query Language. In Proc. of the 10th Int’l Symposium on Spatial Data Handling, Springer-Verlag Berlin. 225-237.
Khatri V., Ram S., Snodgrass R.T., O’Brien G. (2002) Supporting User Defined Granularities and Indeterminacy in a Spatio-temporal Conceptual Model. Annals of Mathematics and Artificial Intelligence. Special Issue on Spatial and Temporal Granularity, 36(1):195-232.
Koperski K.(1999) A Progressive Refinement Approach to Spatial Data Mining. Ph.D. Thesis, Simon Fraser University, Canada.
Kulik L., Duckham M., Egenhofer M.J. (2005) Ontology driven Map Generalization. Journal of Visual Language and Computing, 16(3):245-267.
Langran G. (1992) Time in Geographic Information Systems. Taylor & Francis.
Li T., Li Q., Zhu S., Ogihara M. (2002) A Survey on Wavelet Applications in Data Mining. ACM SIGKDD Explorations Newsletter. 4(2):49-68.
Mennis J., Liu J.W. (2005) Mining Association Rules in Spatio-Temporal Data: An Analysis of Urban Socioeconomic and Land Cover Change. Transactions in GIS, Blackwell Publishing. 9(1):5–17.
Muller J-C., Lagrange J.P., Weibel R. (eds.) (1995) GIS and Generalization: methodology and practice. Taylor and Francis.
National Hurricane Center (2003), Tropical Cyclone Report: Hurricane Isabel, http://www.tpc.ncep.noaa.gov/2003isabel.shtml.
Ng R.T., Han J. (1994) Efficient and Effective Clustering Methods for Spatial Data Mining. In Proc. of the 20th Int’l Conf. on Very Large Data Bases. 144-155.
ORACLEâ„¢ (2008), Oracle Corp. http://www.oracle.com. Last date accessed: 01/2008.
PostgreSQL (2008), PostgreSQL Inc. http://www.postgresql.org. Last date accessed: 01/2008.
Roddick J.F., Lees B.G. (2001) Paradigms for Spatial and Spatio-Temporal Data Mining. Geographic Data Mining and Knowledge Discovery. Taylor and Francis. 33-50.
Saalfeld A. (1999) Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartography and Geographic Information Science. 26(1):7-18.
Shahabi C., Chung S., Safar M., Hajj G. (2001) 2D TSA-tree: A Wavelet-Based Approach to Improve the Efficiency of MultiLevel Spatial Data Mining. In Proc. of the 13th Int’l Conf. on Scientific and Statistical Database Management. 59-68.
Stell J.G., Worboys M. (1998) Stratified Map Spaces: A Fomal Basis for Multi-Resolution Spatial Databases. In Proc. of the 8th Int’l Symposium on Spatial Data Handling. 180-189.
Tsoukatos I., Gunopulos D. (2001) Efficient Mining of Spatiotemporal Patterns. In Proc. of the 7th Int’l Symposium on Spatial and Temporal Databases. LNCS 2121:425-442.
Tryfona N., Jensen C.S. (1999) Conceptual Modeling for Spatiotemporal Applications. Geoinformatica, Springer Netherlands. 3(3):245-268.
Vangenot C. (2001) Supporting Decision-Making with Alternative Data Representations. Journal of Geographic Information and Decision Anaysis. 5(2):66-82.
Worboys M. (1994) A Unified Model for Spatial and Temporal Information. The Computer Journal, Oxford University Press. 37(1):26-34.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Camossi, E., Bertolotto, M., Kechadi, T. (2008). Mining Spatio-Temporal Data at Different Levels of Detail. In: Bernard, L., Friis-Christensen, A., Pundt, H. (eds) The European Information Society. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78946-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-78946-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78945-1
Online ISBN: 978-3-540-78946-8
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)