Skip to main content

A Dynamical Ant Colony Optimization with Heuristics for Scheduling Jobs on a Single Machine with a Common Due Date

  • Chapter
Metaheuristics for Scheduling in Industrial and Manufacturing Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 128))

Summary

The problem of scheduling jobs on a single machine with a common due date is one of NP-complete problems. It is to minimize the total earliness and tardiness penalties. This chapter introduces a Dynamical Ant Colony Optimization (DACO) with heuristics for scheduling jobs on a single machine with a common due date. In the proposed algorithm, the parameter of heuristic information is dynamically adjusted. Furthermore, additional heuristics are embedded into DACO as local search to escape from local optima. Compared with other existing approaches in the literature, the proposed algorithm is very useful for scheduling jobs on a single machine with a common due date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biskup, D. and Feldmann, M. (2001) Benchmarks for scheduling on a single machine against restrictive and unrestrictive common due dates, Computers and Operations Research: 28(8) 787-801.

    Article  MATH  Google Scholar 

  2. Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP Completeness, W. H. Freeman and Company, San Francisco, California.

    MATH  Google Scholar 

  3. Bose, R. (2002) Information theory, coding, and cryptography, McGraw Hill.

    Google Scholar 

  4. Gordon, V., Proth, J.-M. and Chu, C. (2002) A survey of the state-of-art of common due date assignment and scheduling research, European Journal of Operational Research: 139(1) 1-25.

    Article  MATH  MathSciNet  Google Scholar 

  5. Gupta, J. N. D., Lauff, V. and Wernerm F. (2004) Two-machine flow shop problems with nonregular criteria, Journal of Mathematical Modelling and Algorithms: 3 123-151.

    Article  MATH  MathSciNet  Google Scholar 

  6. Feldmann, M. and Biskup D. (2003) Single-machine scheduling for minimizing earliness and tardiness penalties by meta-heuristic approaches, Computers and Industrial Engineering: 44(2) 307-323.

    Article  Google Scholar 

  7. James, R. J. W. (1997) Using tabu search to solve the common due date early/tardy machine scheduling problem, Computers and Operations Research: 24(3) 199-208.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hall, N. G., Kubiak, W. and Sethi, S. P. (1991) Earliness-tardiness scheduling problem, II: deviation of completion times about a restrictive common due date, Operations Research: 39(5) 847-856.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hino, C. M., Ronconi, D. P., and Mendes, A. B. (2005) Minimizing earliness and tardiness penalties in a single-machine problem with a common due date, European Journal of Operational Research: 160(1) 190-201.

    Article  MATH  Google Scholar 

  10. Hoogeveen, J. A. and Velde Van De S. L. (1991) Scheduling around a small common due date, European Journal and Operational Research: 55(2) 237-242.

    Article  MATH  Google Scholar 

  11. Liaw, C.-F. (1999) A Branch-and-Bound Algorithm for the Single Machine Earliness and Tardiness Scheduling Problem, Computers and Operations Research: 26 679-693.

    Article  MATH  MathSciNet  Google Scholar 

  12. Mondal, S. A. and Sen, A. K. (2001) Single machine weighted earliness–tardiness penalty problem with a common due date, Computers and Operations Research: 28 649-669.

    Article  MATH  Google Scholar 

  13. Lin, S.-W., Chou, S.-Y., and Ying, K.-C. (2007) A sequential exchange approach for minimizing earliness-tardiness penalties of single-machine scheduling with a common due date, European Journal of Operational Search: 177 1294-1301.

    Article  MATH  Google Scholar 

  14. Ibarraki T. and Katoh N. (1988) Resource Allocation Problems: The MIT Press: Cambridge, Massachusetts.

    Google Scholar 

  15. Lee, Z.-J., Lee, C.-Y. (2005) A Hybrid Search Algorithm with Heuristics for Resource Allocation Problem, Information sciences: 173 155-167.

    Article  Google Scholar 

  16. Mittenthal, J., M. Raghavachari, and A. I. Rana. (1993) A hybrid simulated annealing approach for single machine scheduling problems with non-regular penalty functions, Computers and Operations Research: 20 103-111.

    Article  MATH  Google Scholar 

  17. Lee, C. Y. and Kim, S. J. (1995) Parallel genetic algorithms for the earliness-tardiness job scheduling problem with general penalty weights, Computers and Industrial Engineering: 28(2) 231-243.

    Article  Google Scholar 

  18. Liu, M. and Wu, M. (2006) Genetic algorithm for the optimal common due date assignment and the optimal policy in parallel machine earliness/tardiness scheduling problems, Robotics and Computer-Integrated Manufacturing: 22 279-287.

    Article  MATH  Google Scholar 

  19. Jaynes, E. T. (1982) On the rationale of the maximum entropy methods. Proceedings of the IEEE: 70(9) 939-952.

    Article  Google Scholar 

  20. Kahlbacher, H. G. (1993) Scheduling with monotonous earliness and tardiness penalties, European Journal of Operational Research: 64(2) 258-277.

    Article  MATH  MathSciNet  Google Scholar 

  21. Raghavachari, M. (1988) Scheduling problems with non-regular penalty functions: a review, Operations Research: 25 144-164.

    MATH  MathSciNet  Google Scholar 

  22. Szwarc, W. (1989) Single-machine scheduling to minimize absolute deviation of completion times from a common due date, Naval Research Logistics: 36 663-673.

    Article  MATH  MathSciNet  Google Scholar 

  23. Smith, W. E. (1956) Various optimizers for single-stage production, Naval Research Logistics Quarterly: 3 59-66.

    Article  MathSciNet  Google Scholar 

  24. Dorigo M. and Sttzle T. (2004). Ant Colony Optimization: The MIT Press.

    Google Scholar 

  25. Lee, C.-Y., Lee, Z.-J. and Su, S.-F. (2005) Ant Colonies With Cooperative Process Applied To Resource Allocation Problem, Journal of the Chinese Institute of Engineers: 28 879-885.

    Google Scholar 

  26. Lee, Z.-J., Lee, C.-Y. and Su, S.-F. (2002) An Immunity Based Ant Colony Optimization Algorithm for Solving Weapon-Target Assignment Problem, Applied Soft Computing 2(1) 39-47.

    Article  MathSciNet  Google Scholar 

  27. Lee, Z.-J. and Lee, W.-L. (2003) A Hybrid Search Algorithm of Ant Colony Optimization and Genetic Algorithm Applied to Weapon-Target Assignment Problems, Lecture Notes in Computer Science 2690: 278-285.

    Google Scholar 

  28. Bauer, A. et al. (1999) An ant colony optimization approach for the single machine total tardiness problem, Proceedings of the 1999 Congress on Evolutionary Computation: 2 1445-1450.

    Article  Google Scholar 

  29. Varela, G. N. and Sinclair, M. C. (1999) Ant colony optimization for virtual wavelength path routing and wavelength allocation, Proceedings of the 1999 Congress on Evolutionary Computation: 3 1809-1816.

    Article  Google Scholar 

  30. Dicaro, G. and Dorigo, M. (1998) Mobile agents for adaptive routing, Proceedings of the Thirty-First Hawaii International Conference on System Sciences: 7 74-83.

    Article  Google Scholar 

  31. Yu, I. K., Chou, C. S. and Song,Y. H. (1998) Application of the ant colony search algorithm to short-term generation scheduling problem of thermal units, Proceedings of the 1998 International Conference on Power System Technology: 1 552-556.

    Google Scholar 

  32. Nemes L. and Roska, T. (1995) A CNN model of oscillation and chaos in ant colonies: a case study, IEEE Transactions on Circuits and Systems I, Fundamental Theory and Applications: 42 (10) 741-745.

    Article  Google Scholar 

  33. Pan Q.-K., Tasgetiren M. F. and Liang Y.-C. (2006) Minimizing total earliness and tardiness penalties with a common due date on a single-machine using a discrete particle swarm optimization algorithm, Lecture Notes in Computer Science: 4150 460-467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, ZJ., Lin, SW., Ying, KC. (2008). A Dynamical Ant Colony Optimization with Heuristics for Scheduling Jobs on a Single Machine with a Common Due Date. In: Xhafa, F., Abraham, A. (eds) Metaheuristics for Scheduling in Industrial and Manufacturing Applications. Studies in Computational Intelligence, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78985-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78985-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78984-0

  • Online ISBN: 978-3-540-78985-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics