Skip to main content

Ensembles of Classifiers in Arrears Management

  • Chapter
Soft Computing Applications in Business

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 230))

  • 623 Accesses

Abstract

The literature suggests that an ensemble of classifiers outperforms a single classifier across a range of classification problems. This chapter provides a brief background on issues related ensemble construction and data set imbalance. It describes the application of ensembles of neural network classifiers and rule based classifiers to the prediction of potential defaults for a set of personal loan accounts drawn from a medium sized Australian financial institution. The imbalanced nature of the data sets necessitated the implementation of strategies to avoid under learning of the minority class and two such approaches (minority over-sampling and majority under-sampling) were adopted here. The ensembles outperformed the single classifiers, irrespective of the strategy that was used. The results suggest that an ensemble approach has the potential to provide a high rate of classification accuracy for problem domains of this type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baesens, B., Van Gestel, T., Stepanova, M., Vanthienen, J.: Neural Network Survival Analysis for Personal Loan Data. In: Proceedings of the Eighth Conference on Credit Scoring and Credit Control (CSCC VIII 2003), Edinburgh, Scotland (2003)

    Google Scholar 

  • Bernardini, F.C., Monard, M.C., Prati, R.C.: Constructing Ensembles of Symbolic Classifiers. In: Proceedings of the 5th International Conference on Hybrid Intelligent Systems (HIS 2005), Rio de Janeiro Brazil, pp. 315–322. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  • Chawla, N.V., Hall, L.O., Bowyer, K., Kegelmeyer, W.P.: Learning Ensembles from Bites: A Scalable and Accurate Approach. Journal of Machine Learning 5, 421–451 (2004)

    MathSciNet  Google Scholar 

  • Cohen, G., Hilario, M., Sax, H., Hugonnet, S., Geissbuhler, A.: Learning form imbalanced data in surveillance of nosocomial infection. Artificial Intelligence in Medicine 37, 7–18 (2006)

    Article  Google Scholar 

  • Desai, V.S., Crook, J.N., Overstreet, G.A.: A Comparison of Neural Networks and Linear Scoring Models in the credit union environment. European Journal of Operational Research 95, 24–39 (1995)

    Article  Google Scholar 

  • Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Drummond, C., Holte, R.C.: Severe Class Imbalance: Why Better Algorithms Aren’t the Answer. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 539–546. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Fahlman, S.E.: Faster-learning variations on back-propagation: An empirical study. In: Sejnowski, T.J., Hinton, G.E., Touretzky, D.S. (eds.) 1988 Connectionist Models Summer School. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  • Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Saitta, L. (ed.) Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, pp. 148–156. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  • Grannitto, P.M., Verdes, P.F., Ceccatto, H.A.: Neural network ensembles: evaluation of ag-gregation algorithms. Artificial Intelligence 163, 139–162 (2005)

    Article  MathSciNet  Google Scholar 

  • Guo, H., Viktor, H.L.: Learning form Imbalanced Data Sets with Boosting and Data Gen-eration: The DataBoost-IM Approach. ACM SIGKDD Explorations Newsletter: Special Issue on Learning from Imbalanced Datasets 6, 30–39 (2004)

    Article  Google Scholar 

  • Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

  • Hansen, L.K., Salamon, P.: Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, F.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer Series in Statistics, Springer, New York (2003)

    Google Scholar 

  • Hoffman, F., Baesens, B., Martens, J., Put, F., Vanthienen, J.: Comparing a Genetic Fuzzy and a NeuroFuzzy Classifier for Credit Scoring. International Journal of Intelligent Systems 17, 1067–1083 (2002)

    Article  Google Scholar 

  • Huysmans, J., Baesens, B., Vanthienen, J., Van Getsel, T.: Failure Prediction with Self Or-ganising Maps. Expert Systems with Applications 30, 479–487 (2006)

    Article  Google Scholar 

  • Karray, F.O., de Silva, C.: Soft Computing and Intelligent Systems Design, Harlow, England. Pearson Education Limited, London (2004)

    Google Scholar 

  • Ko, A.H.-R., Sabourin, R., deS (Jr.), B.A.: Combining Diversity and Classification Accuracy for Ensemble Selection in Random Subspaces. In: Proceedings 2006 International Joint Conference on Neural Networks, Vancouver Canada, pp. 2144–2151 (2006)

    Google Scholar 

  • Kucheva, L.I.: Error Bounds for Aggressive and Conservative Adaboost. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 25–34. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  • Kucheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifiers Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning 51, 181–207 (2003)

    Article  Google Scholar 

  • Lewis, E.M.: An Introduction to Credit Scoring. The Athena Press, San Rafael, California (1992)

    Google Scholar 

  • Mays, E.: Handbook of Credit Scoring. Glenlake Publishing, Chicago (2001)

    Google Scholar 

  • McNelis, P.D.: Neural Networks in Finance: Gaining Predictive Edge in the Market. Elsevier Academic Press, Burlington, MA (2005)

    Google Scholar 

  • Nauck, D., Kruse, R.: NEFCLASS - A Neuro-Fuzzy Approach for the Classification of Data. In: George, K.M., Carrol, J.H., Deaton, E., Oppenheim, D., Hightower, J. (eds.) Proceedings of the 1995 ACM Symposium on Applied Computing, Nashville, Tennessee. ACM Press New York, New York (1995)

    Google Scholar 

  • Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  • Scheurmann, E., Matthews, C.: Neural Network Classifiers in Arrears Management. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 325–330. Springer, Heidelberg (2005)

    Google Scholar 

  • Srivastra, R.P.: Automating judgemental decisions using neural networks: a model for processing business loan applications. In: Agrawal, J.P., Kumar, V., Wallentine (eds.) Proceed-ings of the 1992 ACM Conference on Communications, Kansas City, Missouri ACM Press, New York (1992)

    Google Scholar 

  • Torres-Sospedra, J., Fernandez-Redono, M., Hernandez-Espinosa, C.: Combination Methods for Ensembles of MF. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 131–138. Springer, Heidelberg (2005)

    Google Scholar 

  • Vellido, A., Lisboa, P.J.G., Vaughan, J.: Neural Networks in Business: a survey of applications (1992-1998). Expert Systems with Applications 17, 51–70 (1999)

    Article  Google Scholar 

  • Wanas, N.M., Kamel, M.S.: Decision Fusion in Neural Network Ensembles. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2001), vol. 4, pp. 2952–2957. IEEE Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  • West, D.: Neural network credit scoring models. Computers & Operations Research 27, 1131–1152 (2000)

    Article  MATH  Google Scholar 

  • Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  • Wu, Y., Arribas, J.I.: Fusing Output Information in Neural Networks: Ensemble Performa Better. In: Proceedings of the 25th Annual Conference of IEEE EMBS, Cancum, Mexico (2003)

    Google Scholar 

  • Yule, G.U., Kendall, M.G.: An Introduction to the Theory of Statistics, 14th edn., Griffin, London (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bhanu Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthews, C., Scheurmann, E. (2008). Ensembles of Classifiers in Arrears Management. In: Prasad, B. (eds) Soft Computing Applications in Business. Studies in Fuzziness and Soft Computing, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79005-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79005-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79004-4

  • Online ISBN: 978-3-540-79005-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics