Skip to main content

An Evolutionary Programming Based Knowledge Ensemble Model for Business Risk Identification

  • Chapter
Soft Computing Applications in Business

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 230))

Abstract

Business risk identification is one of the most important components in business risk management. In this study, a knowledge ensemble methodology is proposed to design an intelligent business risk identification system, which is composed of two procedures. First of all, some data mining and knowledge discovery algorithms are used to explore the implied knowledge about business risk hidden in the business data. Then the implied knowledge generated from different mining algorithms is aggregated into an ensemble output using an evolutionary programming (EP) technique. For verification, the knowledge ensemble methodology is applied to a real-world business risk dataset. The experimental results reveal that the proposed intelligent knowledge ensemble methodology provides a promising solution to business risk identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahn, B.S., Cho, S.S., Kim, C.Y.: The integrated methodology of rough set theory and artificial neural network for business failure prediction. Expert Systems with Application 18, 65–74 (2000)

    Article  Google Scholar 

  • Altman, E.I.: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance 23, 589–609 (1968)

    Article  Google Scholar 

  • Altman, E.I.: The success of business failure prediction models: An international survey. Journal of Banking and Finance 8, 171–198 (1984)

    Article  Google Scholar 

  • Altman, E.I.: Corporate Financial Distress and Bankruptcy. John Wiley, New York (1993)

    Google Scholar 

  • Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: Comparison using discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance 18, 505–529 (1994)

    Article  Google Scholar 

  • Beaver, W.H.: Financial ratios as predictors of failure. Journal of Accounting Research 4, 71–111 (1966)

    Article  Google Scholar 

  • Beynon, M.J., Peel, M.J.: Variable precision rough set theory and data discretisation: An application to corporate failure prediction. Omega 29, 561–576 (2001)

    Article  Google Scholar 

  • Cooper, D.R., Emory, C.W.: Business Research Methods. Irwin, Chicago (1995)

    Google Scholar 

  • Courtis, J.K.: Modeling a financial ratios categoric framework. Journal of Business Finance and Accounting 5, 371–386 (1978)

    Article  Google Scholar 

  • Dimitras, A.I., Slowinski, R., Susmaga, R., Zopounidis, C.: Business failure prediction using rough sets. European Journal of Operational Research 114, 263–280 (1999)

    Article  MATH  Google Scholar 

  • Dimitras, A.I., Zanakis, S.H., Zopounidis, C.: A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research 90, 487–513 (1996)

    Article  MATH  Google Scholar 

  • Dimitras, A.I., Zopounidis, C., Hurson, C.H.: A multicriteria decision aid method for the assessment of business failure risk. Foundations of Computing and Decision Sciences 20, 99–112 (1995)

    MATH  Google Scholar 

  • Eisenbeis, R.A.: Pitfalls in the application of discriminant analysis in business and economics. The Journal of Finance 32, 875–900 (1977)

    Article  Google Scholar 

  • Fogel, D.B.: System Identification through Simulated Evolution: A Machine Learning Approach to Modeling. Ginn Press, Needham, MA (1991)

    Google Scholar 

  • Frydman, H., Altman, E.I., Kao, D.L.: Introducing recursive partitioning for financial classification: The case of financial distress. The Journal of Finance 40, 269–291 (1985)

    Article  Google Scholar 

  • Gupta, Y.P., Rao, R.P., Bagghi, P.K.: Linear goal programming as an alternative to multivariate discriminant analysis: A note. Journal of Business Finance and Accounting 17, 593–598 (1990)

    Article  Google Scholar 

  • Hair, J.F., Anderson, R.E., Tatham, R.E., Black, W.C.: Multivariate Data Analysis with Readings. Prentice Hall, Englewood Cliffs, NJ (1998)

    Google Scholar 

  • Hornik, K., Stinchocombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)

    Article  Google Scholar 

  • Jones, F.L.: Current techniques in bankruptcy prediction. Journal of Accounting Literature 6, 131–164 (1987)

    Google Scholar 

  • Keasey, K., Watson, R.: Financial distress prediction models: a review of their usefulness. British Journal of Management 2, 89–102 (1991)

    Article  Google Scholar 

  • Kim, K.J.: Financial time series forecasting using support vector machines. Neurocomputing 55, 307–319 (2003)

    Article  Google Scholar 

  • Lai, K.K., Yu, L., Huang, W., Wang, S.Y.: A novel support vector machine metamodel for business risk identification. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 980–984. Springer, Heidelberg (2006a)

    Google Scholar 

  • Lai, K.K., Yu, L., Wang, S.Y., Zhou, L.G.: Neural network metalearning for credit scoring. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS, vol. 4113, pp. 403–408. Springer, Heidelberg (2006b)

    Chapter  Google Scholar 

  • Lai, K.K., Yu, L., Wang, S.Y., Zhou, L.G.: Credit risk analysis using a reliability-based neural network ensemble model. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 682–690. Springer, Heidelberg (2006c)

    Chapter  Google Scholar 

  • Lai, K.K., Yu, L., Zhou, L.G., Wang, S.Y.: Credit risk evaluation with least square support vector machine. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 490–495. Springer, Heidelberg (2006d)

    Chapter  Google Scholar 

  • Lee, K., Booth, D., Alam, P.: A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications 29, 1–16 (2005)

    Article  Google Scholar 

  • Luoma, M., Laitinen, E.K.: Survival analysis as a tool for company failure prediction. Omega 19, 673–678 (1991)

    Article  Google Scholar 

  • Messier, W.F., Hansen, J.V.: Including rules for expert system development: An example using default and bankruptcy data. Management Science 34, 1403–1415 (1988)

    Article  Google Scholar 

  • Ohlson, J.A.: Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 3, 109–131 (1980)

    Article  Google Scholar 

  • Olmeda, I., Fernandez, E.: Hybrid classifiers for financial multicriteria decision making: The case of bankruptcy prediction. Computational Economics 10, 317–335 (1997)

    Article  MATH  Google Scholar 

  • Piramuthu, S.: Financial credit-risk evaluation with neural and neurofuzzy systems. European Journal of Operational Research 112, 310–321 (1999)

    Article  Google Scholar 

  • Scott, J.: The probability of bankruptcy: A comparison of empirical predictions and theoretical models. Journal of Banking and Finance 5, 317–344 (1981)

    Article  Google Scholar 

  • Shin, K.S., Lee, T.S., Kim, H.J.: An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications 28, 127–135 (2005)

    Article  Google Scholar 

  • Siskos, Y., Zopounidis, C., Pouliezos, A.: An integrated DSS for financing firms by an industrial development bank in Greece. Decision Support Systems 12, 151–168 (1994)

    Article  Google Scholar 

  • Tay, F.E.H., Cao, L.J.: Application of support vector machines in financial time series forecasting. Omega 29, 309–317 (2001)

    Article  Google Scholar 

  • Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  • Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  • Varetto, F.: Genetic algorithms applications in the analysis of insolvency risk. Journal of Banking and Finance 2, 1421–1439 (1998)

    Article  Google Scholar 

  • Vermeulen, E.M., Spronk, J., van der Wijst, N.: The application of the multi-factor model in the analysis of corporate failure. In: Zopounidis, C. (ed.) Operational Tools in the Management of Financial Risks, pp. 59–73. Kluwer Academic Publisher, Dordrecht (1998)

    Google Scholar 

  • White, H.: Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks 3, 535–549 (1990)

    Article  Google Scholar 

  • Yang, S., Browne, A.: Neural network ensembles: Combining multiple models for enhanced performance using a multistage approach. Expert Systems 21, 279–288 (2004)

    Article  Google Scholar 

  • Yu, L., Wang, S.Y., Lai, K.K.: A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates. Computers and Operations Research 32, 2523–2541 (2005)

    Article  MATH  Google Scholar 

  • Zavgren, C.V.: The prediction of corporate failure: The state of the art. Journal of Financial Literature 2, 1–37 (1983)

    Google Scholar 

  • Zavgren, C.V.: Assessing the vulnerability to failure of American industrial firms: A logistic analysis. Journal of Business Finance and Accounting 12, 19–45 (1985)

    Article  Google Scholar 

  • Zmijewski, M.E.: Methodological issues related to the estimation of financial distress prediction models. Studies on Current Econometric Issues in Accounting Research, 59–82 (1984)

    Google Scholar 

  • Zopounidis, C.: A multicriteria decision making methodology for the evaluation of the risk of failure and an application. Foundations of Control Engineering 12, 45–67 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bhanu Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, L., Lai, K.K., Wang, S. (2008). An Evolutionary Programming Based Knowledge Ensemble Model for Business Risk Identification. In: Prasad, B. (eds) Soft Computing Applications in Business. Studies in Fuzziness and Soft Computing, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79005-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79005-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79004-4

  • Online ISBN: 978-3-540-79005-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics