Skip to main content

Human Haptic Perception and the Design of Haptic-Enhanced Virtual Environments

  • Chapter
The Sense of Touch and its Rendering

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 45))

Summary

This chapter presents an overview of interesting scientific findings related to human haptic perception and discuss the usability of these scientific findings for the design and development of virtual environments including haptic rendering. The first section of the chapter deals with pure haptic perception whereas the second and third sections are devoted to the integration of kinesthetic information with other sensory inputs like vision and audition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherman, K.P., Ward, J.W., Wills, D.P., Mohsen, A.M.: A portable virtual environment knee arthroscopy training system with objective scoring. Stud. Health Technol. Inform. 62, 335–336 (1999)

    Google Scholar 

  2. Kühnapfel, U., Cakmak, H., Maass, H.: Modeling for endoscopic surgery. In: IEEE Symposium on Simulation, Delft, NL, pp. 22–32 (1999)

    Google Scholar 

  3. Bro-Nielsen, M., Tasto, J.L., Cunningham, R., Merril, G.L.: Preop endoscopic simulator: a pc-based immersive training system for bronchoscopy. Stud Health Technol Inform 62, 76–82 (1999)

    Google Scholar 

  4. Delp, S., Loan, P., Basdogan, C., Rosen, J.: Surgical simulation: an emerging technology for training in emergency medicine. Presence 6, 147–159 (1997)

    Google Scholar 

  5. Vierck, C.J.J.: Comparisons of punctate, edge and surface stimulation of peripheral, slowly-adapting, cutaneous, afferent units of cats. Brain Res. 175, 155–159 (1979)

    Article  Google Scholar 

  6. Casla, M., Blanco, F., Travieso, D.: Haptic perception of geometric illusions by persons who are totally congenitally blind. Journal of Visual Impairment & Blindness, 583–588 (1999)

    Google Scholar 

  7. Heller, M.A., Calcaterra, J.A., Burson, L.L., Green, S.L.: The tactual horizontal-vertical illusion depends on radial motion of the entire arm. Percept Psychophys 59, 1297–1311 (1997)

    Google Scholar 

  8. Cheng, M.F.: Tactile-kinesthetic perception of length. Am. J. Psychol. 81, 74–82 (1968)

    Article  Google Scholar 

  9. Blumenfeld, W.: The relationship between the optical and haptic construction of space. Acta Psychol (Amst) 2, 125–174 (1936)

    Article  Google Scholar 

  10. Kappers, A.M.: Haptic perception of parallelity in the midsagittal plane. Acta Psychol (Amst) 109, 25–40 (2002)

    Article  Google Scholar 

  11. Kappers, A.M., Koenderink, J.J.: Haptic perception of spatial relations. Perception 28, 781–795 (1999)

    Article  Google Scholar 

  12. Gentaz, E., Hatwell, Y.: The haptic oblique effect in children’s and adults perception of orientation. Perception 24, 631–646 (1995)

    Article  Google Scholar 

  13. Luyat, M., Gentaz, E., Corte, T.R., Guerraz, M.: Reference frames and haptic perception of orientation: body and head tilt effects on the oblique effect. Percept Psychophys 63, 541–554 (2001)

    Google Scholar 

  14. Heller, M.A., Brackett, D.D., Wilson, K., Yoneyama, K., Boyer, A., Steffen, H.: The haptic muller-lyer illusion in sighted and blind people. Perception 31, 1263–1274 (2002)

    Article  Google Scholar 

  15. Fasse, E.D., Hogan, N., Kay, B.A., Mussa-Ivaldi, F.A.: Haptic interaction with virtual objects. spatial perception and motor control. Biol. Cybern. 82, 69–83 (2000)

    Google Scholar 

  16. Millar, S., al Attar, Z.: Vertical and bisection bias in active touch. Perception 29, 481–500 (2000)

    Article  Google Scholar 

  17. Armstrong, L., Marks, L.E.: Haptic perception of linear extent. Percept Psychophys 61, 1211–1226 (1999)

    Google Scholar 

  18. Wong, T.S.: Dynamic properties of radial and tangential movements as determinants of the haptic horizontal–vertical illusion with an l figure. J. Exp. Psychol. Hum. Percept.Perform 3, 151–164 (1977)

    Article  Google Scholar 

  19. Lederman, S.J., Klatzky, R.L., Barber, P.O.: Spatial and movement-based heuristics for encoding pattern information through touch. J. Exp. Psychol. Gen. 114, 33–49 (1985)

    Article  Google Scholar 

  20. Lederman, S.J., Klatzky, R.L.: Hand movements: a window into haptic object recognition. Cognit. Psychol. 19, 342–368 (1987)

    Article  Google Scholar 

  21. Matthews, P.: Where does sherrington’s muscular sense originate? muscles, joints, corollary discharges? Annual Review of Neuroscience, vol. 5, pp. 189–218 (1982)

    Google Scholar 

  22. Roland, P.E., Ladegaard-Pedersen, H.: A quantitative analysis of sensations of tension and of kinaesthesia in man. evidence for a peripherally originating muscular sense and for a sense of effort. Brain 100, 671–692 (1977)

    Google Scholar 

  23. Rymer, W.Z., D’Almeida, A.: Joint position sense: the effects of muscle contraction. Brain 103, 1–22 (1980)

    Article  Google Scholar 

  24. Roland, P.E.: Sensory feedback to the cerebral cortex during voluntary movement in man. Behavioral and Brain Sciences 1, 129–171 (1978)

    Article  Google Scholar 

  25. Bingham, G.P., Zaal, F., Robin, D., Shull, J.A.: Distortions in definite distance and shape perception as measured by reaching without and with haptic feedback. J. Exp. Psychol. Hum. Percept Perform 26, 1436–1460 (2000)

    Article  Google Scholar 

  26. Klatzky, R.L., Lederman, S.J.: Toward a computational model of constraint-driven exploration and haptic object identification. Perception 22, 597–621 (1993)

    Article  Google Scholar 

  27. Hollins, M., Bensmaia, S.J., Karloff, K., Young, F.: Individual differences in perceptual space for tactile textures: Evidence from multidimensional scaling. Perception & Psychophysics 62, 1534–1544 (2000)

    Google Scholar 

  28. Lederman, S.: Tactile roughness of grooved surfaces: The touching process and effects of macro- and microsurface structure. Perception & Psychophysics 16, 385–395 (1974)

    Google Scholar 

  29. Lederman, S.: Tactual roughness perception: Spatial and temporal determinants. Canadian Journal of Psychology 37, 498–511 (1983)

    Google Scholar 

  30. Hollins, M., Bensmaia, S.J., Roy, E.A.: Vibrotaction and texture perception. Behav Brain Res. 135, 51–56 (2002)

    Article  Google Scholar 

  31. LaMotte, R.H., Srinivasan, M.A.: Surface microgeometry: Tactile perception and neural encoding. In: Franzen, O., Westman, J. (eds.) Information Processing in the Somatosensory System, pp. 49–58. Macmillan Press, London (1991)

    Google Scholar 

  32. Connor, C.E., Hsiao, S.S., Phillips, J.R., Johnson, K.O.: Tactile roughness: Neural codes that account for psychophysical magnitude estimates. Journal of Neuroscience 10, 3823–3836 (1990)

    Google Scholar 

  33. Blake, D.T., Hsiao, S.S., Johnson, K.O.: Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 17, 7480–7489 (1997)

    Google Scholar 

  34. Taylor, M., Lederman, S.: Tactile roughness of grooved surfaces: A model and the effect of friction. Perception & Psychophysics 17, 23–26 (1975)

    Google Scholar 

  35. Lederman, S.J., Klatzky, R.L.: Relative availability of surface and object properties during early haptic processing. J. Exp. Psychol Hum Percept Perform 23, 1680–1707 (1997)

    Article  Google Scholar 

  36. Connor, C.E., Johnson, K.O.: Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception. J. Neurosci. 12, 3414–3426 (1992)

    Google Scholar 

  37. Hsiao, S.S., Johnson, K.O., Twombly, I.A.: Roughness coding in the somatosensory system. Acta Psychol (Amst) 84, 53–67 (1993)

    Article  Google Scholar 

  38. Lederman, S., Klatzky, R.L.: Sensing and displaying spatially distributed fingertip forces in haptic interfaces for teleoperator and virtual environment systems. Presence 8, 86–103 (1999)

    Article  Google Scholar 

  39. Lederman, S.: Heightening tactile impression of surface texture. In: Gordon, G. (ed.) Active touch: The mechanism of recognition of objects by manipulation, Pergamon Press, Oxford (1978)

    Google Scholar 

  40. Lederman, S.J.: ”improving one’s touch”.. and more. Percept Psychophys 24, 154–160 (1978)

    Google Scholar 

  41. Srinivasan, M.A., LaMotte, R.H.: Tactual discrimination of softness. J. Neurophysiol. 73, 88–101 (1995)

    Google Scholar 

  42. Jones, L.A., Hunter, I.W.: A perceptual analysis of stiffness. Exp. Brain Res. 79, 150–156 (1990)

    Article  Google Scholar 

  43. LaMotte, R.H.: Softness discrimination with a tool. J. Neurophysiol. 83, 1777–1786 (2000)

    Google Scholar 

  44. Bicchi, A., Scilingo, E., De Rossi, D.: The role of contact area spread rate in haptic discrimination of softness. IEEE Transactions on Robotics and Automation 16, 496–504 (2000)

    Article  Google Scholar 

  45. Swarup, N.: Haptic interaction with deformable objects using real-time dynamic simulation. Ms thesis (1995)

    Google Scholar 

  46. Lawrence, D., Pao, L., Dougherty, A., Salada, M., Pavlou, Y.: Rate-hardedness: A new performance metric for haptic interfaces. IEEE Transactions on Robotics and Automation 16, 357–371 (2000)

    Article  Google Scholar 

  47. Craig, J.C., Rollman, G.B.: Somesthesis. Annu. Rev. Psychol. 50, 305–331 (1999)

    Article  Google Scholar 

  48. Sherrick, C., Cholewiak, R.: Cutaneous sensitivity. In: Boff, K., Kaufman, L., Thomas, J. (eds.) Handbook of Perception and Human Performance, pp. 12–1–12–58. John Wiley & Sons, New York (1986)

    Google Scholar 

  49. Kenshalo, D., Holmes, C., Wood, P.: Warm and cold thresholds as a function of rate of stimulus temperature change. Perception & Psychophysics 3, 81–84 (1968)

    Google Scholar 

  50. Kenshalo, D.: The cutaneous senses. In: Kling, J., Riggs, L. (eds.) Woodworth & Schlosberg’s Experimental Psychology: Sensation and perception, 3rd edn., vol. 1, Holt, Rinehart & Winston, New York (1972)

    Google Scholar 

  51. Stevens, J.C., Choo, K.K.: Temperature sensitivity of the body surface over the life span. Somatosens Mot. Res. 15, 13–28 (1998)

    Article  Google Scholar 

  52. Lee, D.K., McGillis, S.L., Greenspan, J.D.: Somatotopic localization of thermal stimuli: I. A comparison of within- versus across-dermatomal separation of innocuous thermal stimuli. Somatosens Mot. Res. 13, 67–71 (1996)

    Google Scholar 

  53. Green, B.G.: Localization of thermal sensation: An illusion and synthetic heat. Perception & Psychophysics 22, 331–337 (1977)

    Google Scholar 

  54. Green, B.G.: Referred thermal sensations: warmth versus cold. Sens Processes 2, 220–230 (1978)

    Google Scholar 

  55. Green, B.G.: Thermo-tactile interactions: Some influences of temperature on touch. In: Kenshalo, D. (ed.) Sensory Function of the Skin of Humans, Plenum Press, New York (1979)

    Google Scholar 

  56. Weber, E.: The sense of touch. Academic Press, London (1978)

    Google Scholar 

  57. Charpentier, A.: Analyse expérimentale de quelques éléments de la sensation de poids. Archives de Physiologie Normales et Pathologiques 3, 122–135 (1891)

    Google Scholar 

  58. Dresslar, F.: Studies in the psychology of touch. American Journal of Psychology 6, 313–368 (1894)

    Article  Google Scholar 

  59. Jones, L.A.: Motor illusions: what do they reveal about proprioception? Psychol Bull 103, 72–86 (1988)

    Google Scholar 

  60. Amazeen, E.L., Turvey, M.T.: Weight perception and the haptic size-weight illusion are functions of the inertia tensor. J. Exp. Psychol. Hum. Percept Perform 22, 213–232 (1996)

    Article  Google Scholar 

  61. Wolfe, H.: Some effects of size on judgments of weight. Psychological Review 5, 25–54 (1898)

    Article  Google Scholar 

  62. Flanagan, J.R., Wing, A.M., Allison, S., Spenceley, A.: Effects of surface texture on weight perception when lifting objects with a precision grip. Percept Psychophys 57, 282–290 (1995)

    Google Scholar 

  63. Flanagan, J.R., Wing, A.M.: Effects of surface texture and grip force on the discrimination of hand-held loads. Percept Psychophys 59, 111–118 (1997)

    Google Scholar 

  64. Rinkenauer, G., Mattes, S., Ulrich, R.: The surface-weight illusion: on the contribution of grip force to perceived heaviness. Percept Psychophys 61, 23–30 (1999)

    Google Scholar 

  65. Ellis, R.R., Lederman, S.J.: The material-weight illusion revisited. Percept Psychophys 61, 1564–1576 (1999)

    Google Scholar 

  66. Flanagan, J.R., Bandomir, C.A.: Coming to grips with weight perception: effects of grasp configuration on perceived heaviness. Percept Psychophys 62, 1204–1219 (2000)

    Google Scholar 

  67. Appelle, S., Gravetter, F.J., Davidson, P.W.: Proportion judgments in haptic and visual form perception. Can. J. Psychol. 34, 161–174 (1980)

    Google Scholar 

  68. Cronin, V.: Active and passive touch at four age levels. Developmental Psychology 13, 253–256 (1977)

    Article  Google Scholar 

  69. Heller, M.A.: Reproduction of tactually perceived forms. Percept Mot Skills 50, 943–946 (1980)

    Google Scholar 

  70. Heller, M.A.: Haptic dominance in form perception with blurred vision. Perception 12, 607–613 (1983)

    Article  Google Scholar 

  71. Voisin, J., Lamarre, Y., Chapman, C.E.: Haptic discrimination of object shape in humans: contribution of cutaneous and proprioceptive inputs. Exp. Brain Res. 145, 251–260 (2002)

    Article  Google Scholar 

  72. Gordon, I.E., Morison, V.: The haptic perception of curvature. Percept Psychophys 31, 446–450 (1982)

    Google Scholar 

  73. Pont, S.C., Kappers, A.M., Koenderink, J.J.: Haptic discrimination of curved strips. In: Bardy, B., Bootsma, R., Guiard, Y. (eds.) Studies in Perception and Action III, pp. 307–310. Erlbaum, Hillsdale (1995)

    Google Scholar 

  74. Goodwin, A.W., Wheat, H.E.: Human tactile discrimination of curvature when contact area with the skin remains constant. Exp. Brain Res. 88, 447–450 (1992)

    Article  Google Scholar 

  75. Kappers, A.M., Koenderink, J.J.: Haptic unilateral and bilateral discrimination of curved surfaces. Perception 25, 739–749 (1996)

    Article  Google Scholar 

  76. LaMotte, R.H., Srinivasan, M.A.: Responses of cutaneous mechanoreceptors to the shape of objects applied to the primate fingerpad. Acta Psychol (Amst) 84, 41–51 (1993)

    Article  Google Scholar 

  77. Srinivasan, M., LaMotte, R.H.: Encoding of shapes in the responses of cutaneous mechanoreceptors. In: Franzen, O., Westman, J. (eds.) Information Processing in the Somatosensory System, pp. 59–69. Macmillan, London (1991)

    Google Scholar 

  78. Pont, S.C., Kappers, A.M., Koenderink, J.J.: Similar mechanisms underlie curvature comparison by static and dynamic touch. Percept Psychophys 61, 874–894 (1999)

    Google Scholar 

  79. Louw, S., Kappers, A.M., Koenderink, J.J.: Haptic discrimination of stimuli varying in amplitude and width. Exp. Brain Res. 146, 32–37 (2002)

    Article  Google Scholar 

  80. Vogels, I.M., Kappers, A.M., Koenderink, J.J.: Haptic aftereffect of curved surfaces. Perception 25, 109–119 (1996)

    Article  Google Scholar 

  81. Davidson, P.W.: Haptic judgments of curvature by blind and sighted humans. J. Exp. Psychol. 93, 43–55 (1972)

    Article  Google Scholar 

  82. Davidson, P.W., Whitson, T.: Haptic equivalence matching of curvature by blind and sighted humans. Journal of Experimental Psychology 102, 687–690 (1974)

    Article  Google Scholar 

  83. Pont, S.C., Kappers, A.M., Koenderink, J.J.: Anisotropy in haptic curvature and shape perception. Perception 27, 573–589 (1998)

    Article  Google Scholar 

  84. Christou, C., Wing, A.: Haptic curvature constancy: The influence of surface friction (Manuscript submitted for publication)

    Google Scholar 

  85. Sachtler, W., Pendexter, M., Biggs, J., Srinivasan, M.: Haptically perceived orientation of a planar surface is altered by tangential forces (2000)

    Google Scholar 

  86. Robles-De-La-Torre, G., Hayward, V.: Force can overcome object geometry in the perception of shape through active touch. Nature 412, 445–448 (2001)

    Article  Google Scholar 

  87. Drewing, K., Ernst, M.O.: Integration of force and position cues for shape perception through active touch. Brain Res. 1078, 92–100 (2006)

    Article  Google Scholar 

  88. Drewing, K., Wiecki, T., Ernst, M.O.: Material properties determine how we integrate shape signals in active touch. In: WorldHaptics (2005)

    Google Scholar 

  89. O’Malley, M., Goldfarb, M.: The effect of force saturation on the haptic perception of detail. IEEE/ASME Transactions on Mechanotronics 73, 280–288 (2002)

    Article  Google Scholar 

  90. Klatzky, R.L., Lederman, S.J., Metzger, V.A.: Identifying objects by touch: an expert system. Percept Psychophys 37, 299–302 (1985)

    Google Scholar 

  91. Turvey, M.T.: Dynamic touch. Am. Psychol. 51, 1134–1152 (1996)

    Article  Google Scholar 

  92. Turvey, M.T., Carello, C.: Dynamic touch. In: Epstein, W., Rogers, S. (eds.) Handbook of Perception and Cognition, vol. 5, pp. 401–490. Academic Press, San Diego (1995)

    Google Scholar 

  93. Klatzky, R.L., Lederman, S.: The haptic glance: A route to rapid object identification and manipulation. In: Gopher, D., Koriat, A. (eds.) Attention and Performance XVII: Cognitive regulation of performance: Interaction of theory and application, pp. 165–196. Erlbaum, Mahwah (1999)

    Google Scholar 

  94. Klatzky, R.L., Lederman, S., Reed, C.: Haptic integration of object properties: texture, hardness, and planar contour. J. Exp. Psychol. Hum. Percept Perform 15, 45–57 (1989)

    Article  Google Scholar 

  95. Lederman, S.J., Klatzky, R.L.: Extracting object properties through haptic exploration. Acta Psychol (Amst) 84, 29–40 (1993)

    Article  Google Scholar 

  96. Lederman, S.J., Klatzky, R.L.: Haptic classification of common objects: knowledge-driven exploration. Cognit. Psychol. 22, 421–459 (1990)

    Article  Google Scholar 

  97. Klatzky, R.L., Lederman, S.J., Matula, D.E.: Haptic exploration in the presence of vision. J. Exp. Psychol. Hum. Percept Perform 19, 726–743 (1993)

    Article  Google Scholar 

  98. Klatzky, R.L., Loomis, J.M., Lederman, S.J., Wake, H., Fujita, N.: Haptic identification of objects and their depictions. Percept Psychophys 54, 170–178 (1993)

    Google Scholar 

  99. Johnson, K.O., Phillips, J.R.: Tactile spatial resolution. i. two-point discrimination, gap detection, grating resolution, and letter recognition. J. Neurophysiol. 46, 1177–1192 (1981)

    Google Scholar 

  100. Lakatos, S., Marks, L.E.: Haptic form perception: relative salience of local and global features. Percept Psychophys 61, 895–908 (1999)

    Google Scholar 

  101. Newell, F.N., Ernst, M.O., Tjan, B.S., Bulthoff, H.H.: Viewpoint dependence in visual and haptic object recognition. Psychol. Sci. 12, 37–42 (2001)

    Article  Google Scholar 

  102. Johansson, R., Westling, G.: Tactile afferent signals in control of precision grip. In: Jeannerod, M. (ed.) Attention and Performance XIII, pp. 677–713. Erlbaum, Mahwah (1990)

    Google Scholar 

  103. Essick, G.K.: Factors affecting direction discrimination of moving tactile stimuli. In: Morley, J. (ed.) Neural Aspects of Tactile Sensation, pp. 1–54. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  104. Gould, W., Vierck, C.J., Luck, M.: Cues supporting recognition of the orientation or direction of movement of tactile stimuli. In: Kenshalo, D. (ed.) Sensory function of the skin of humans, pp. 63–73. Plenum Press, New York (1979)

    Google Scholar 

  105. Srinivasan, M.A., Whitehouse, J.M., LaMotte, R.H.: Tactile detection of slip: surface microgeometry and peripheral neural codes. J. Neurophysiol. 63, 1323–1332 (1990)

    Google Scholar 

  106. Olausson, H.: The influence of spatial summation on human tactile directional sensibility. Somatosens Mot. Res. 11, 305–310 (1994)

    Article  Google Scholar 

  107. Gardner, E.P., Sklar, B.F.: Discrimination of the direction of motion on the human hand: a psychophysical study of stimulation parameters. J. Neurophysiol. 71, 2414–2429 (1994)

    Google Scholar 

  108. Gardner, E.P., Sklar, B.F.: Factors influencing discrimination of direction of motion on the human hand. Society for Neuroscience Abstracts 12, 798 (1996)

    Google Scholar 

  109. Hall, G., Donaldson, H.: Motor sensations on the skin. Mind 10, 557–572 (1885)

    Article  Google Scholar 

  110. Norrsell, U., Olausson, H.: Human, tactile, directional sensibility and its peripheral origins. Acta Physiol. Scand 144, 155–161 (1992)

    Article  Google Scholar 

  111. Essick, G.K., McGuire, M.: Role of kinetic and static cues in human subjects evaluation of direction of cutaneous stimulus motion. Society for Neuroscience Abstracts 12, 14 (1986)

    Google Scholar 

  112. Loomis, J.M., Collins, C.C.: Sensitivity to shifts of a point stimulus: an instance of tactile hyperacuity. Percept Psychophys 24, 487–492 (1978)

    Google Scholar 

  113. Whitsel, B., Dreyer, D., Hollins, M., Young, M.: The coding of direction of tactile stimulus movement: Correlative psychophysical and electrophysiological data. In: Kenshalo, D. (ed.) Sensory functions of the skin of humans, pp. 79–107. Plenum Press, New York (1979)

    Google Scholar 

  114. Dreyer, D., Duncan, G., Wong, C.: Role of position sense in direction detection on the skin. Society for Neuroscience Abstracts 5, 671 (1979)

    Google Scholar 

  115. Essick, G.K., McGuire, M., Joseph, A., Franzen, O.: Characterization of the percepts evoked by discontinuous motion over the perioral skin. Somatosens Mot. Res. 9, 175–184 (1992)

    Article  Google Scholar 

  116. Geldard, F.: The human senses. Wiley & Sons, New York (1972)

    Google Scholar 

  117. Geldard, F.: Sensory saltation: Metastability in the perceptual world. Erlbaum, Hillsdale (1975)

    Google Scholar 

  118. Sherrick, C., Rogers, R.: Apparent haptic movement. Perception & Psychophysics 1, 175–180 (1966)

    Google Scholar 

  119. Hayward, V., Cruz-Hernandez, J.: Tactile display device using distributed lateral skin stretch (2000)

    Google Scholar 

  120. Drewing, K., Fritschi, M., Zopf, R., Ernst, M.O., Buss, M.: First evaluation of a novel tactile display exerting shear force via lateral displacement. ACM Transactions on Applied Perception 2, 1–14 (2005)

    Article  Google Scholar 

  121. Bicchi, A., Dente, D., Scilingo, E., Sgambelluri, N.: Perceptual biases in tactile flow. In: WorldHaptics (2005)

    Google Scholar 

  122. Hay, J., Pick, H., Ikeda, K.: Visual capture produced by prism spectacles. Psychonomic Science 2, 215–216 (1965)

    Google Scholar 

  123. Klein, R.: A developmental study of perception under conditions of conflicting sensory cues. Ph.D. thesis (1966)

    Google Scholar 

  124. Smothergill, D.: A developmental study of the influence of memory for proprioceptive and visual cues on the visual capture phenomenon. Ph.D. thesis (1968)

    Google Scholar 

  125. Pick, H., Warren, D.H., Hay, J.: Sensory conflict in judgments of spatial direction. Perception & Psychophysics 6, 203–205 (1969)

    Google Scholar 

  126. van Beers, R.J., Sittig, A.C., Gon, J.J.: Integration of proprioceptive and visual position-information: An experimentally supported model. J. Neurophysiol. 81, 1355–1364 (1999)

    Google Scholar 

  127. Rossetti, Y., Desmurget, M., Prablanc, C.: Vectorial coding of movement: vision, proprioception, or both? J. Neurophysiol. 74, 457–463 (1995)

    Google Scholar 

  128. Paillard, J., Jordan, P., Brouchon, M.: Visual motion cues in prismatic adaptation: evidence of two separate and additive processes. Acta Psychol (Amst) 48, 253–270 (1981)

    Article  Google Scholar 

  129. Bock, O., Burghoff, M.: Visuo-motor adaptation: evidence for a distributed amplitude control system. Behav. Brain Res. 89, 267–273 (1997)

    Article  Google Scholar 

  130. van Beers, R.J., Wolpert, D.M., Haggard, P.: When feeling is more important than seeing in sensorimotor adaptation. Curr. Biol. 12, 834–837 (2002)

    Article  Google Scholar 

  131. Gepshtein, S., Banks, M.S.: Viewing geometry determines how vision and haptics combine in size perception. Curr. Biol. 13, 483–488 (2003)

    Article  Google Scholar 

  132. Bertelson, P.: Starting from the ventriloquist: The perception of multimodal events. In: Sabourin, M., Craik, F., Roberts, M. (eds.) Advances in psychological science II: Biological and cognitive aspects, pp. 419–439. Psychology Press, Hove (1998)

    Google Scholar 

  133. Freedman, S.J., Wilson, L., Rekosh, J.H.: Compensation for auditory re-arrangement in hand-ear coordination. Percept Mot Skills 24, 1207–1210 (1967)

    Google Scholar 

  134. Caclin, A., Soto-Faraco, S., Kingstone, A., Spence, C.: Tactile ”capture” of audition. Percept Psychophys 64, 616–630 (2002)

    Google Scholar 

  135. Heller, M.A.: Tactual perception of embossed morse code and braille: the alliance of vision and touch. Perception 14, 563–570 (1985)

    Article  Google Scholar 

  136. Loomis, J.M., Klatzky, R.L., Lederman, S.J.: Similarity of tactual and visual picture recognition with limited field of view. Perception 20, 167–177 (1991)

    Article  Google Scholar 

  137. Heller, M.A.: The effect of orientation on visual and tactual braille recognition. Perception 16, 291–298 (1987)

    Article  Google Scholar 

  138. Klatzky, R.L., Lederman, S., Reed, C.: There’s more to touch than meets the eye: the salience of object attributes for haptics with and without vision. Journal of Experimental Psychology: General 116, 356–369 (1987)

    Article  Google Scholar 

  139. Heller, M.A.: Picture and pattern perception in the sighted and the blind: the advantage of the late blind. Perception 18, 379–389 (1989)

    Article  MathSciNet  Google Scholar 

  140. Manyam, V.J.: A psychophysical measure of visual and kinaesthetic spatial discriminative abilities of adults and children. Perception 15, 313–324 (1986)

    Article  Google Scholar 

  141. Ernst, M.O., Banks, M.S., Bulthoff, H.H.: Touch can change visual slant perception. Nat. Neurosci. 3, 69–73 (2000)

    Article  Google Scholar 

  142. Heller, M.A.: Haptic dominance in form perception: vision versus proprioception. Perception 21, 655–660 (1992)

    Article  Google Scholar 

  143. Jolicoeur, P.: The time to name disoriented natural objects. Mem. Cognit. 13, 289–303 (1985)

    Google Scholar 

  144. Edelman, S., Bulthoff, H.H.: Orientation dependence in the recognition of familiar and novel views of three-dimensional objects. Vision Res. 32, 2385–2400 (1992)

    Article  Google Scholar 

  145. Rock, I., DiVita, J.: A case of viewer-centered object perception. Cognit. Psychol. 19, 280–293 (1987)

    Article  Google Scholar 

  146. Newell, F., Bulthoff, H., Ernst, M.: Multisensory enhancement in the recognition of actively explored objects (manuscript submitted for publication)

    Google Scholar 

  147. Brewster, D.: Letters on natural magic, Harper, New York (1839)

    Google Scholar 

  148. Gibson, J.: Adaptation, after-effect and contrast in the perception of curved lines. Journal of Experimental Psychology 16, 1–31 (1933)

    Article  Google Scholar 

  149. Nielsen, T.: Volition: A new experimental approach. Scandinavian Journal of Psychology 4, 225–230 (1963)

    Article  Google Scholar 

  150. Rock, I., Victor, J.: Vision and touch: An experimentally created conflict between the two senses. Science 143, 594–596 (1964)

    Article  Google Scholar 

  151. Tastevin, J.: En partant de l’expérience d’aristotle. L’encéphale 1, 57–84 (1937)

    Google Scholar 

  152. Kinney, J., Luria, S.: Conflicting visual and tactual-kinesthetic stimulation. Perception & Psychophysics 8, 189–192 (1970)

    Google Scholar 

  153. Fishkin, S.M., Pishkin, V., Stahl, M.L.: Factors involved in visual capture. Percept Mot Skills 40, 427–434 (1975)

    Google Scholar 

  154. Miller, E.A.: Interaction of vision and touch in conflict and nonconflict form perception tasks. J. Exp. Psychol. 96, 114–123 (1972)

    Article  Google Scholar 

  155. McDonnell, P.M., Duffett, J.: Vision and touch: a reconsideration of conflict between the two senses. Can J. Psychol. 26, 171–180 (1972)

    Google Scholar 

  156. Heller, M.A., Calcaterra, J.A., Green, S.L., Brown, L.: Intersensory conflict between vision and touch: the response modality dominates when precise, attention-riveting judgments are required. Percept Psychophys 61, 1384–1398 (1999)

    Google Scholar 

  157. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)

    Article  Google Scholar 

  158. Wu, W., Basdogan, C., Srinivasan, M.: Visual, haptic, and bimodal perception of size and stiffness in virtual environments. ASME Dynamic Systems and Control Division 67, 19–26 (1999)

    Google Scholar 

  159. Collins, J.K., Singer, G.: Interaction between sensory spatial after-effects and persistence of response following behavioral compensation. J. Exp. Psychol. 77, 301–307 (1968)

    Article  Google Scholar 

  160. Day, R.H., Singer, G.: Sensory adaptation and behavioral compensation with spatially transformed vision and hearing. Psychol Bull 67, 307–322 (1967)

    Article  Google Scholar 

  161. Singer, G., Day, R.H.: The effects of spatial judgments on the perceptual aftereffect resulting from transformed vision. Australian Journal of Psychology 18, 63–70 (1966)

    Article  Google Scholar 

  162. Over, R.: An experimentally induced conflict between vision and proprioception. British Journal of Psychology 57, 335–341 (1966)

    Google Scholar 

  163. Lederman, S.J., Abbott, S.G.: Texture perception: studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics. J. Exp. Psychol. Hum. Percept Perform 7, 902–915 (1981)

    Article  Google Scholar 

  164. Heller, M.A.: Visual and tactual texture perception: intersensory cooperation. Percept Psychophys 31, 339–344 (1982)

    Google Scholar 

  165. Heller, M.A.: Texture perception in sighted and blind observers. Percept Psychophys 45, 49–54 (1989)

    Google Scholar 

  166. Lederman, S.J., Thorne, G., Jones, B.: Perception of texture by vision and touch: multidimensionality and intersensory integration. J. Exp. Psychol. Hum. Percept Perform 12, 169–180 (1986)

    Article  Google Scholar 

  167. Heller, M.A.: Effect of magnification on texture perception. Percept Mot Skills 61, 1242 (1985)

    Google Scholar 

  168. Drewing, K., Ernst, M.O., Lederman, S., Klatzky, R.L.: Roughness and spatial density judgements on visual and haptic textures using virtual reality. In: Buss, M., Fritschi, M. (eds.) EuroHaptics, Munich, Herbert Hieronymus, pp. 203–206 (2004)

    Google Scholar 

  169. Lederman, S.J.: Auditory texture perception. Perception 8, 93–103 (1979)

    Article  Google Scholar 

  170. Jousmaki, V., Hari, R.: Parchment-skin illusion: sound-biased touch. Curr. Biol. 8, R190 (1998)

    Google Scholar 

  171. Guest, S., Catmur, C., Lloyd, D., Spence, C.: Audiotactile interactions in roughness perception. Exp. Brain Res. 146, 161–171 (2002)

    Article  Google Scholar 

  172. Tipper, S.P., Lloyd, D., Shorland, B., Dancer, C., Howard, L.A., McGlone, F.: Vision influences tactile perception without proprioceptive orienting. Neuroreport 9, 1741–1744 (1998)

    Article  Google Scholar 

  173. Tipper, S.P., Phillips, N., Dancer, C., Lloyd, D., Howard, L.A., McGlone, F.: Vision influences tactile perception at body sites that cannot be viewed directly. Exp. Brain Res. 139, 160–167 (2001)

    Article  Google Scholar 

  174. Halligan, P.W., Marshall, J.C., Hunt, M., Wade, D.T.: Somatosensory assessment: can seeing produce feeling? J. Neurol. 244, 199–203 (1997)

    Article  Google Scholar 

  175. Rorden, C., Heutink, J., Greenfield, E., Robertson, I.H.: When a rubber hand ’feels’ what the real hand cannot. Neuroreport 10, 135–138 (1999)

    Article  Google Scholar 

  176. di Pellegrino, G., Ladavas, E., Farne, A.: Seeing where your hands are. Nature 388, 730 (1997)

    Article  Google Scholar 

  177. Pavani, F., Spence, C., Driver, J.: Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol. Sci. 11, 353–359 (2000)

    Article  Google Scholar 

  178. Ramachandran, V.S., Rogers-Ramachandran, D., Cobb, S.: Touching the phantom limb. Nature 377, 489–490 (1995)

    Article  Google Scholar 

  179. Botvinick, M., Cohen, J.: Rubber hands feel touch that eyes see. Nature 391, 756 (1998)

    Article  Google Scholar 

  180. Bresciani, J., Dammeier, F., Ernst, M.: Vision and touch are automatically integrated for the perception of sequences of events. J. Vis. 6, 554–564 (2006)

    Article  Google Scholar 

  181. Bresciani, J.P., Ernst, M.O., Drewing, K., Bouyer, G., Maury, V., Kheddar, A.: Feeling what you hear: auditory signals can modulate tactile tap perception. Exp. Brain Res. 162, 172–180 (2005)

    Article  Google Scholar 

  182. Hotting, K., Roder, B.: Hearing cheats touch, but less in congenitally blind than in sighted individuals. Psychol. Sci. 15, 60–64 (2004)

    Article  Google Scholar 

  183. Bresciani, J.P., Dammeier, F., Ernst, M.: Trimodal integration of visual, tactile and auditory signals for the perception of sequences of events. Brain Research Bulletin (in press)

    Google Scholar 

  184. Bresciani, J., Ernst, M.: Signal reliability modulates auditory-tactile integration for event counting. Neuroreport 18, 1157–1161 (2007)

    Article  Google Scholar 

  185. Srinivasan, M., Chen, J.: Human performance in controlling normal forces of contact with rigid objects. Advances in Robotics, Mechatronics, and Haptic Interfaces 49, 119–125 (1993)

    Google Scholar 

  186. Jones, L.A.: Visual and haptic feedback in the control of force. Exp. Brain Res. 130, 269–272 (2000)

    Article  Google Scholar 

  187. Petersen, H., Magnusson, M., Johansson, R., Fransson, P.A.: Auditory feedback regulation of perturbed stance in stroke patients. Scand. J. Rehabil. Med. 28, 217–223 (1996)

    Google Scholar 

  188. Srinivasan, M., Beauregard, G., Brock, D.: The impact of visual information on the haptic perception of stiffness in virtual environments. ASME Dynamic Systems and Control Division 58, 555–559 (1996)

    Google Scholar 

  189. Colgate, J., Grafting, P., Stanley, M.: Implementation of stiff virtual walls in force reflecting interfaces. In: IEEE-VRAIS, Seattle, USA (1993)

    Google Scholar 

  190. DiFranco, D., Beauregard, G., Srinivasan, M.: The effect of auditory cues on the haptic perception of stiffness in virtual environments. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 61 (1997)

    Google Scholar 

  191. Gordon, A.M., Forssberg, H., Johansson, R.S., Westling, G.: Visual size cues in the programming of manipulative forces during precision grip. Exp. Brain Res. 83, 477–482 (1991)

    Google Scholar 

  192. Cross, D., Rotkin, L.: The relation between size and apparent heaviness. Perception & Psychophysics 18, 79–87 (1975)

    Google Scholar 

  193. Seashore, C.: Some psychological statistics: 2. the material weight illusion. University of Iowa Studies in Psychology 2, 36–46 (1899)

    Google Scholar 

  194. De Camp, J.: The influence of color on apparent weight: A preliminary study. Journal of Experimental Psychology 62, 347–370 (1917)

    Article  Google Scholar 

  195. Kheddar, A., Drif, A., Citerin, J., Le Mercier, B.: A multi-level haptic rendering concept. In: Buss, M., Fritschi, M. (eds.) EuroHaptics, Munich, Herbert Hieronymus, pp. 147–154 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonio Bicchi Martin Buss Marc O. Ernst Angelika Peer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bresciani, JP., Drewing, K., Ernst, M.O. (2008). Human Haptic Perception and the Design of Haptic-Enhanced Virtual Environments. In: Bicchi, A., Buss, M., Ernst, M.O., Peer, A. (eds) The Sense of Touch and its Rendering. Springer Tracts in Advanced Robotics, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79035-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79035-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79034-1

  • Online ISBN: 978-3-540-79035-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics