Skip to main content

Dynamic Field Theory and Embodied Communication

  • Conference paper
Modeling Communication with Robots and Virtual Humans

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4930))

Abstract

Dynamical Field Theory is a neurally based approach to embodied and situated cognition, in which information is represented in continuous activation fields defined over metric spaces. The temporal evolution of activation patterns under the influence of inputs and neuronal interaction is described by a dynamical system, whose stable states, localized peaks of activation, are the units of representation. This approach has been successfully used to capture many elementary forms of cognition. Communication poses the new challenge of understanding how different modalities can be integrated in a continuously unfolding communicative process. In this chapter we give a brief introduction to Dynamical Field Theory in embodied cognition, and discuss extensions of its ideas to embodied communication. We sketch a highly simplified example of how sequence generation may occur in dynamical fields. We apply these concepts to a specific exemplary problem in embodied communication, turn taking, the temporal structure of which we capture in a simple model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thelen, E.: Time-scale dynamics and the development of an embodied cognition. In: Port, R.F., van Gelder, T. (eds.) Mind as motion: Explorations in the dynamics of cognition, pp. 69–100. MIT Press, Cambridge (1996)

    Google Scholar 

  2. Clark, A.: An embodied cognitive science. Trends in Cognitive Sciences 3(9), 345–351 (1999)

    Article  Google Scholar 

  3. Anderson, M.L.: Embodied cognition: A field guide. Artificial Intelligence 149, 91–130 (2003)

    Article  Google Scholar 

  4. Schöner, G.: Dynamical systems approaches to cognition. In: Sun, R. (ed.) Cambridge Handbook of Computational Cognitive Modeling, Cambridge University Press, Cambridge (2007)

    Google Scholar 

  5. Spencer, J.P., Schöner, G.: Bridging the representational gap in the dynamical systems approach to development. Developmental Science 6, 392–412 (2003)

    Article  Google Scholar 

  6. Sacks, H., Schegloff, E.A., Jefferson, G.: A Simplest Systematics for the Organization of Turn-Taking for Conversation. Language 50(4), 696–735 (1974)

    Article  Google Scholar 

  7. Wilson, M., Wilson, T.P.: An oscillator model of the timing of turn-taking. Psychonomic Bulletin and Review 12(6), 957–968 (2005)

    Google Scholar 

  8. Thórisson, K.R.: Natural turn-taking needs no manual: Computational theory and model, from perception to action. In: Granström, B., House, D., Karlsson, I. (eds.) Multimodality in Language and Speech Systems, pp. 173–207. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002)

    Google Scholar 

  9. Thelen, E., Schöner, G., Scheier, C., Smith, L.: The dynamics of embodiment: A field theory of infant perseverative reaching. Brain and Behavioral Sciences 24, 1–33 (2001)

    Article  Google Scholar 

  10. Hock, H.S., Schöner, G., Giese, M.A.: The dynamical foundations of motion pattern formation: Stability, selective adaptation, and perceptual continuity. Perception & Psychophysics 65, 429–457 (2003)

    Google Scholar 

  11. Rumelhart, D.E., Norman, D.A.: Simulating a skilled typist: A study of the skilled motor performance. Cognitive Science 6, 1–36 (1982)

    Article  Google Scholar 

  12. Houghton, G.: The problem of serial order: a neural network model of sequence learning and recall. In: Dale, R., Mellish, C., Zock, M. (eds.) Current research in natural language generation, pp. 287–319. Academic Press Professional, Inc., London (1990)

    Google Scholar 

  13. Boardman, I., Bullock, D.: A neural network model of serial order recall from short-term memory. In: Proceedings of the 1991 International Joint Conference on Neural Networks, Seattle WA, July 8-12. International Neural Network Society, pp. II–879–884 (1991)

    Google Scholar 

  14. Beiser, D.G., Houk, J.C.: Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. Journal of Neurophysiology 79(6), 3168–3188 (1998)

    Google Scholar 

  15. Farrell, S., Lewandowsky, S.: An endogenous distributed model of ordering in serial recall. Psychonomic Bulletin and Review 9(1), 59–79 (2002)

    Google Scholar 

  16. Deco, G., Rolls, E.T.: Sequential memory: A putative neural and synaptic dynamical mechanism. Journal of Cognitive Neuroscience 17(2), 294–307 (2005)

    Article  Google Scholar 

  17. Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychological Review 109, 545–572 (2002)

    Article  Google Scholar 

  18. Grossberg, S.: Biological competition: Decision rules, pattern formation, and oscillations. Proceedings of the National Academy of Sciences (USA) 77, 2338–2342 (1980)

    Article  MATH  Google Scholar 

  19. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  Google Scholar 

  20. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics 27, 77–87 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wilson, H.R.: Spikes, Decisions, and Actions: Dynamical Foundations of Neurosciences. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  22. Deco, G., Schürmann, B.: Information Dynamics: Foundations and Applications. Springer, New York (2000)

    Google Scholar 

  23. Goldstone, R.L.: Similarity, interactive activation, and mapping. Journal of Experimental Psychology: Learning, Memory, and Cognition 20, 3–28 (1994)

    Article  Google Scholar 

  24. McClelland, J.L., Rogers, T.T.: The parallel distributed processing approach to semantic cognition. Nature Reviews Neuroscience 4(4), 310–322 (2003)

    Article  Google Scholar 

  25. Churchland, P.S., Sejnowski, T.J.: The computational brain. Bradford Book/The MIT Press, Cambridge (1992)

    Google Scholar 

  26. Williams, R.J.: The logic of activation functions. In: Rumelhart, D.E., McClelland, J.L., the PDP research group (eds.) Parallel distributed processing, vol. 1, pp. 423–443 (1986)

    Google Scholar 

  27. Grossberg, S.: The quantized geometry of visual space: The coherent computation of depth, form, and lightness. Behavioral and Brain Sciences 6, 625–692 (1983)

    Article  Google Scholar 

  28. Wilimzig, C., Schöner, G.: How categorical behavior emerges from continuous neural representations: Dynamic field theory (in preparation)

    Google Scholar 

  29. Humphreys, G.W., Forde, E.M.E., Francis, D.: The organization of sequential actions. In: Monsell, S., Driver, J. (eds.) Control of Cognitive Processes — Attention and Performance XVIII, pp. 427–442. MIT Press, Cambridge (2000)

    Google Scholar 

  30. Sandamirskaya, Y., Schöner, G.: Dynamical field theory of sequence generation (in preparation)

    Google Scholar 

  31. Searle, J.R.: Intentionality — An essay in the philosophy of mind. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  32. Aldridge, J.W., Berridge, K.C.: Coding of serial order by neostriatal neurons: A ”natural action” approach to movement sequence. Journal of Neuroscience 18(7), 2777–2787 (1998)

    Google Scholar 

  33. Procyk, E., Tanaka, Y.L., Joseph, J.P.: Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nature Neuroscience 3, 502–508 (2000)

    Article  Google Scholar 

  34. Schöner, G., Kelso, J.A.S.: Dynamic pattern generation in behavioral and neural systems. Science 239, 1513–1520 (1988)

    Article  Google Scholar 

  35. Schöner, G.: Timing, clocks, and dynamical systems. Brain and Cognition 48, 31–51 (2002)

    Article  Google Scholar 

  36. Streek, J.: Gesture as communication i: Its coordination with gaze and speech. Communication Monographs 60(4), 275–299 (1993)

    Article  Google Scholar 

  37. Johnson, J.S., Spencer, J.P., Schöner, G.: A dynamic neural field theory of multi-item visual working memory and change detection. In: Proceedings of the 28th Annual Conference of the Cognitive Science Society (CogSci 2006), Vancouver, Canada, pp. 399–404 (2006)

    Google Scholar 

  38. Schöner, G., Dose, M.: A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion. Robotics and Autonomous Systems 10, 253–267 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ipke Wachsmuth Günther Knoblich

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandamirskaya, Y., Schöner, G. (2008). Dynamic Field Theory and Embodied Communication. In: Wachsmuth, I., Knoblich, G. (eds) Modeling Communication with Robots and Virtual Humans. Lecture Notes in Computer Science(), vol 4930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79037-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79037-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79036-5

  • Online ISBN: 978-3-540-79037-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics