Skip to main content

The Evolution of Cognition — From First Order to Second Order Embodiment

  • Conference paper
Modeling Communication with Robots and Virtual Humans

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4930))

Abstract

The capability to behave autonomously is assumed to rely fundamentally on being embedded into the current situation and in the own body. While reactive systems seem sufficient to address these aspects to assure ones surviving in an unpredictable environment, they clearly lack cognitive capabilities as planning ahead: The latter requires internal models which represents the body and the environment and which can be used to mentally simulate behaviours before actually performing one of them. Initially, these models may have evolved in reactive systems to serve specific actions. Cognitive functions may have developed later exploiting the capabilities of these models.

We provide a neuronal network approach for such an internal model that can be used as a forward model, an inverse model and a sensor fusion model. It is integrated into a reactive control scheme of a walking machine, enabling the system to plan its actions by mentally simulating them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Newell, A.: The Knowledge Level. Artificial Intelligence 18(1), 87–127 (1982)

    Article  Google Scholar 

  2. Brooks, R.A.: Intelligence without reason. In: Myopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), Sydney, Australia, pp. 569–595. Morgan Kaufmann publishers Inc., San Mateo (1991)

    Google Scholar 

  3. Verschure, P., Althaus, P.: The study of learning and problem solving using artificial devices: Synthetic epistemology. Bildung und Erziehung 52(3), 317–333 (1999)

    Google Scholar 

  4. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  5. Maes, P.: A bottom-up mechanism for behavior selection in an artificial creature. In: Proceedings of the first international conference on simulation of adaptive behavior on: From animals to animats, pp. 238–246. MIT Press, Cambridge (1990)

    Google Scholar 

  6. Verschure, P., Voegtlin, T., Douglas, R.: Environmentally mediated synergy between perception and behaviour in mobile robots. Nature 425, 620–624 (2003)

    Article  Google Scholar 

  7. Parisi, D., Cecconi, F.: Learning in the Active Mode. In: Proceedings of the Third European Conference on Advances in Artificial Life, London, UK, pp. 439–462. Springer, Heidelberg (1995)

    Google Scholar 

  8. Beer, R.D.: Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3), 91–99 (2000)

    Article  Google Scholar 

  9. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Cruse, H.: The Evolution of Cognition: A Hypothesis. Cognitive Science (27), 135–155 (2003)

    Article  Google Scholar 

  11. Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. Journal of Comparative Physiology A 189, 579–588 (2003)

    Article  Google Scholar 

  12. Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies of visual homing in mobile robots. In: Webb, B., Consi, T. (eds.) Biorobotics - Methods and Applications, AAAI Press / MIT Press (2001)

    Google Scholar 

  13. Bläsing, B., Cruse, H.: Stick insect locomotion in a complex environment: climbing over large gaps. The Journal of Experimental Biology 207, 1273–1286 (2004)

    Article  Google Scholar 

  14. Bläsing, B., Cruse, H.: Mechanisms of stick insect locomotion in a gap-crossing paradigm. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 190, 173–183 (2004)

    Article  Google Scholar 

  15. Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod Structure and Development 33(3), 237–250 (2004)

    Article  Google Scholar 

  16. Schilling, M., Cruse, H., Arena, P.: Hexapod walking: an expansion to Walknet dealing with leg amputations and force oscillations. Biological Cybernetics 96(3), 323–340 (2007)

    Article  MATH  Google Scholar 

  17. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2001)

    Google Scholar 

  18. Metzinger, T.: Different conceptions of embodiment. Psyche 12(4) (2006)

    Google Scholar 

  19. Mataric, M.: Situated Robotics. In: Encyclopedia of Cognitive Science, Nature Publishing Group, Macmillan Reference Limited, Basingstoke (2002)

    Google Scholar 

  20. Mataric, M.: Behavior-Based Robotics. In: Wilson, R., Keil, F. (eds.) MIT Encyclopedia of Cognitive Sciences, pp. 74–77. MIT Press, Cambridge (1999)

    Google Scholar 

  21. Cruse, H.: Feeling our body - the basis of cognition? Evolution and Cognition (5), 162–173 (1999)

    Google Scholar 

  22. McFarland, D., Bösser, T.: Intelligent behavior in animals and robots. MIT Press, Cambridge (1993)

    Google Scholar 

  23. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6(6), 242–247 (2002)

    Article  Google Scholar 

  24. Wolpert, D., Ghahramani, Z., Flanagan, J.: Perspectives and Problems in Motor Learning. Trends in Cognitive Sciences 5(11), 487–494 (2001)

    Article  Google Scholar 

  25. Wolpert, D., Ghahramani, Z., Jordan, M.: An internal model for sensorimotor integration. Science 269(5232), 1880–1882 (1995)

    Article  Google Scholar 

  26. Frith, C.D., Blakemore, S.J., Wolpert, D.M.: Abnormalities in the Awareness and Control of Action. Philosophical Transactions of the Royal Society of London: Biological Sciences 355, 1771–1788 (2000)

    Article  Google Scholar 

  27. Wolpert, D., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7–8), 1317–1329 (1998)

    Article  Google Scholar 

  28. Stringer, S., Rolls, E.: Hierarchical dynamical models of motor function. Neurocomputing 70, 975–990 (2007)

    Google Scholar 

  29. Cruse, H.: The control of the anterior extreme position of the hindleg of a walking insect. Physiol.Entomol. 4, 121–124 (1979)

    Article  Google Scholar 

  30. Dean, J., Wendler, G.: Stick insect locomotion on a walking wheel: Interleg coordination of leg position. Journal of Experimental Biology 103, 75–94 (1983)

    Google Scholar 

  31. Dürr, V., Krause, A.: The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection. In: Climbing and Walking Robots – From Biology to Industrial Applications. Proc. 4th Int. Conf. Climbing and Walking Robots (CLAWAR 2001, Karlsruhe), pp. 87–96 (2001)

    Google Scholar 

  32. Bernstein, N.A.: The Co-ordination and regulation of movements. Pergamon Press Ltd., Oxford (1967)

    Google Scholar 

  33. Miall, R., Weir, D., Wolpert, D., Stein, J.: Is the Cerebellum a Smith Predictor? Journal of Motor Behavior 25(3), 203–216 (1993)

    Google Scholar 

  34. Desmurget, M., Grafton, S.: Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences 4(11), 423–431 (2000)

    Article  Google Scholar 

  35. Jeannerod, M.: To act or not to act: Perspectives on the representation of actions. Quarterly Journal of Experimental Psychology 52A, 1–29 (1999)

    Article  Google Scholar 

  36. Kleist, H.: Über das Marionettentheater. In: von Kleist, H., und Briefe, S.W., Bd. 2, hrsg. v. Helmut Sembdner, München 1987, S. 345 (originally appeared in Berliner Abendblättern, 1. Jg., 1810)

    Google Scholar 

  37. Mussa-Ivaldi, F., Morasso, P., Zaccaria, R.: Kinematic networks distributed model for representing and regularizing motor redundancy. Biol. Cybern. 60(1), 1–16 (1988)

    Article  Google Scholar 

  38. Steinkühler, U., Cruse, H.: A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol. Cybernetics 79, 457–466 (1998)

    Article  Google Scholar 

  39. Roggendorf, T.: Extending the MMC principle: Simple manipulator and posture models (Submitted)

    Google Scholar 

  40. Kindermann, T., Cruse, H., Dautenhahn, K.: A fast, three-layered neural network for path finding. Network: Computation in neural systems 7, 423–436 (1996)

    Article  Google Scholar 

  41. Brüwer, M., Cruse, H.: A network model for the control of the movement of a redundant manipulator. Biological Cybernetics 62, 549–555 (1990)

    Article  Google Scholar 

  42. Arena, P., Cruse, H., Fortuna, L., Patanè, L.: Obstacle avoidance method for a redundant manipulator controlled through a recurrent neural network. In: Proceedings of SPIE Microtechnologies for the New Millennium 2007, vol. 6592 (2007)

    Google Scholar 

  43. Schilling, M., Cruse, H.: Hierarchical MMC networks as a manipulable body model. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2007), Orlando, FL (2007)

    Google Scholar 

  44. Kindermann, T., Cruse, H.: MMC - a new numerical approach to the kinematics of complex manipulators. Mechanism and Machine Theory 37(4), 375–394 (2002)

    Article  MATH  Google Scholar 

  45. Uddin, L.Q., Iacoboni, M., Lange, C., Keenan, J.P.: The self and social cognition: the role of cortical midline structures and mirror neurons. Trends in Cognitive Sciences 11(4), 153–157 (2007)

    Article  Google Scholar 

  46. Brugger, P.: From phantom limb to phantom body. varieties of extracorporeal awareness. In: Knoblich, G., Thornton, I., Grosjean, M., Shiffrar, M. (eds.) Human Body Perception from the Inside out, pp. 171–209. Oxford: University Press, Oxford (2006)

    Google Scholar 

  47. Funk, M., Shiffrar, M., Brugger, P.: Hand movement observation by individuals born without hands: phantom limb experience constrains visual limb perception. Experimental Brain Research 164(3), 341–346 (2005)

    Article  Google Scholar 

  48. Melzack, R.: Phantom limbs and the concept of a neuromatrix. Trends in Neurosciences 13(3), 88–92 (1990)

    Article  Google Scholar 

  49. Ramachandran, V.S., Rogers-Ramachandran, D., Cobb, S.: Touching the phantom limb. Nature 377(6549), 489–490 (2002)

    Article  Google Scholar 

  50. Lackner, J.: Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111, 281–297 (1988)

    Article  Google Scholar 

  51. Shiffrar, M.: Movement and event perception. In: Goldstein, B. (ed.) The Blackwell Handbook of Perception, pp. 237–272. Blackwell Publishers, Oxford (2001)

    Google Scholar 

  52. Blanke, O., Mohr, C., Michel, C.M., Pascual-Leone, A., Brugger, P., Seeck, M., Landis, T., Thut, G.: Linking Out-of-Body Experience and Self Processing to Mental Own-Body Imagery at the Temporoparietal Junction. J. Neurosci. 25(3), 550–557 (2005)

    Article  Google Scholar 

  53. Metzinger, T.: Being No One. The Self-Model Theory of Subjectivity. MIT Press, Cambridge (2003)

    Google Scholar 

  54. Blanke, O., Landis, T., Spinelli, L., Seeck, M.: Out-of-body experience and autoscopy of neurological origin. Brain 127(2), 243–258 (2004)

    Article  Google Scholar 

  55. Lenggenhager, B., Tadi, T., Metzinger, T., Blanke, O.: Video Ergo Sum: Manipulating Bodily Self-Consciousness. Science 317(5841), 1096–1099 (2007)

    Article  Google Scholar 

  56. Ehrsson, H.: The Experimental Induction of Out-of-Body Experiences. Science 317(5841), 1048 (2007)

    Article  Google Scholar 

  57. Blanke, O., Ortigue, S., Landis, T., Seeck, M.: Stimulating illusory own-body perceptions. Nature 419(6904), 269–270 (2002)

    Article  Google Scholar 

  58. Bläsing, B.: Crossing large gaps: A simulation study of stick insect behavior. Adaptive Behavior 14(3), 265–285 (2006)

    Article  Google Scholar 

  59. Cruse, H., Kühn, S., Park, S., Schmitz, J.: Adaptive control for insect leg position: Controller properties depend on substrate compliance. Journal of Comparative Physiology A 190, 983–991 (2004)

    Article  Google Scholar 

  60. Freud, S.: Formulierung über die zwei Prinzipien des psychischen Geschehens. In: Gesammelte Werke, Bd. VIII, pp. 229–238 (1911)

    Google Scholar 

  61. Freud, S.: Die Verneinung. In: Gesammelte Werke, Bd. XIV, pp. 9–15 (1925)

    Google Scholar 

  62. Kühn, S., Beyn, W., Cruse, H.: Modelling Memory Functions with Recurrent Neural Networks consisting of Input Compensation Units. I. Static Situations. Biological Cybernetics 96(5), 455–470 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Kühn, S., Cruse, H.: Modelling Memory Functions with Recurrent Neural Networks consisting of Input Compensation Units. II. Dynamic Situations. Biological Cybernetics 96(5), 471–486 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gallese, V., Lakoff, G.: The Brain’s concepts: the role of the Sensory-motor system in conceptual knowledge. Cognitive Neuropsychology 22(3–4), 455–479 (2005)

    Article  Google Scholar 

  65. Pulvermüller, F.: Words in the brain’s language. Behavioral and Brain Sciences 22, 253–336 (1999)

    Article  Google Scholar 

  66. Hauk, O., Johnsrude, I., Pulvermüller, F.: Somatotopic representation of action words in human motor and premotor cortex. Neuron 41, 301–307 (2004)

    Article  Google Scholar 

  67. Glenberg, A.M., Kaschak, M.P.: Grounding language in action. Psychonomic Bulletin and Review 9, 558–565 (2002)

    Google Scholar 

  68. Rizzolatti, G.: The mirror neuron system and its function in humans. Anat. Embryol. 210(5–6), 419–421 (2005)

    Article  Google Scholar 

  69. Brugger, P., Blanke, O., Regard, M., Bradford, D., Landis, T.: Polyopic heautoscopy: Case report and review of the literature. Cortex 42(5), 666–674 (2006)

    Article  Google Scholar 

  70. Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., Rizzolatti, G.: Parietal lobe: From action organization to intention understanding. Science 308(5722), 662–667 (2005)

    Article  Google Scholar 

  71. Kohler, E., Keysers, C., Umiltà, M.A., Fogassi, L., Gallese, V., Rizzolatti, G.: Hearing Sounds, Understanding Actions: Action Representation in Mirror Neurons. Science 297(5582), 846–848 (2002)

    Article  Google Scholar 

  72. Cruse, H., Hübner, D.: Selforganizing memory: Active learning of landmarks used for navigation (Submitted)

    Google Scholar 

  73. Rizzolatti, G., Arbib, M.: Language within our grasp. Trends in Neurosciences 21(5), 188–194 (1998)

    Article  Google Scholar 

  74. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3(2), 131–141 (1996)

    Article  Google Scholar 

  75. Hauser, M.D., Chomsky, N., Fitch, W.T.: The Faculty of Language: What Is It, Who Has It, and How Did It Evolve? Science 298(5598), 1569–1579 (2002)

    Article  Google Scholar 

  76. Feldman, J.A.: From Molecule to Metaphor: A Neural Theory of Language. MIT Press, Cambridge (2006)

    Google Scholar 

  77. Feldman, J., Narayanan, S.: Embodied meaning in a neural theory of language. Brain and Language 89(2), 385–392 (2004)

    Article  Google Scholar 

  78. Narayanan, S.: Talking the talk is like walking the walk: A computational model of verbal aspect. In: COGSCI 1997, Stanford, CA, pp. 548–553 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ipke Wachsmuth Günther Knoblich

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schilling, M., Cruse, H. (2008). The Evolution of Cognition — From First Order to Second Order Embodiment. In: Wachsmuth, I., Knoblich, G. (eds) Modeling Communication with Robots and Virtual Humans. Lecture Notes in Computer Science(), vol 4930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79037-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79037-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79036-5

  • Online ISBN: 978-3-540-79037-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics