Abstract
This paper aims to find a proper security notion for commitment schemes to give a sound computational interpretation of symbolic commitments. We introduce an indistinguishability based security definition of commitment schemes that is equivalent to non-malleability with respect to commitment. Then, we give a construction using tag-based encryption and one-time signatures that is provably secure assuming the existence of trapdoor permutations. Finally, we apply this new machinery to give a sound interpretation of symbolic commitments in the Dolev-Yao model while considering active adversaries.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the presence of key-cycles. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)
Adão, P., Bana, G., Scedrov, A.: Computational and information-theoretic soundness and completeness of formal encryption. In: CSFW 2005, pp. 170–184. IEEE Computer Society Press, Los Alamitos (2005)
Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)
Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). J. Cryptology 15(2), 103–127 (2002)
Abadi, M., Warinschi, B.: Security analysis of cryptographically controlled access to XML documents. In: Proceedings of the 24th ACM Symposium on Principles of Database Systems, pp. 108–117. ACM Press, New York (2005)
Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 652–663. Springer, Heidelberg (2005)
Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of DDH with applications to protocol analysis and computational soundness. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, Springer, Heidelberg (2007)
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)
Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable commitment. In: STOC 1998, pp. 141–150. ACM Press, New York (1998)
Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally sound symbolic secrecy in the presence of hash functions. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187. Springer, Heidelberg (2006)
Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)
Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp. 542–552. ACM Press, New York (1991)
Even, S., Goldreich, O., Lempel, A.: A randomizing protocol for signing contracts. Comm. ACM 28(6), 637–647 (1985)
Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg (2000)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Computer and System Sciences 28(2), 270–299 (1984)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. J. ACM 38(1), 691–729 (1991)
Garcia, F.D., van Rossum, P.: Sound computational interpretation of symbolic hashes in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 33–47. Springer, Heidelberg (2006)
Herzog, J.: A computational interpretation of Dolev–Yao adversaries. Theoretical Computer Science 340(1), 57–81 (2005)
Janvier, R., Lakhnech, Y., Mazar, L.: Completing the picture: Soundness of formal encryption in the presence of active adversaries. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 172–185. Springer, Heidelberg (2005)
Kremer, S., Mazaré, L.: Adaptive soundness of static equivalence. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, Springer, Heidelberg (2007)
Mazaré, L.: Computationally sound analysis of protocols using bilinear pairings. In: WITS 2007, pp. 6–21 (2007)
Micciancio, D., Panjwani, S.: Adaptive security of symbolic encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 169–187. Springer, Heidelberg (2005)
Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg (2004)
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attack. In: STOC 1990, pp. 427–437. ACM Press, New York (1990)
Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)
Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004), http://eprint.iacr.org/
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Galindo, D., Garcia, F.D., van Rossum, P. (2008). Computational Soundness of Non-Malleable Commitments. In: Chen, L., Mu, Y., Susilo, W. (eds) Information Security Practice and Experience. ISPEC 2008. Lecture Notes in Computer Science, vol 4991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79104-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-79104-1_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79103-4
Online ISBN: 978-3-540-79104-1
eBook Packages: Computer ScienceComputer Science (R0)