Skip to main content

Computational Soundness of Non-Malleable Commitments

  • Conference paper
Information Security Practice and Experience (ISPEC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4991))

  • 808 Accesses

Abstract

This paper aims to find a proper security notion for commitment schemes to give a sound computational interpretation of symbolic commitments. We introduce an indistinguishability based security definition of commitment schemes that is equivalent to non-malleability with respect to commitment. Then, we give a construction using tag-based encryption and one-time signatures that is provably secure assuming the existence of trapdoor permutations. Finally, we apply this new machinery to give a sound interpretation of symbolic commitments in the Dolev-Yao model while considering active adversaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the presence of key-cycles. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Adão, P., Bana, G., Scedrov, A.: Computational and information-theoretic soundness and completeness of formal encryption. In: CSFW 2005, pp. 170–184. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  3. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). J. Cryptology 15(2), 103–127 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Abadi, M., Warinschi, B.: Security analysis of cryptographically controlled access to XML documents. In: Proceedings of the 24th ACM Symposium on Principles of Database Systems, pp. 108–117. ACM Press, New York (2005)

    Google Scholar 

  6. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 652–663. Springer, Heidelberg (2005)

    Google Scholar 

  7. Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of DDH with applications to protocol analysis and computational soundness. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable commitment. In: STOC 1998, pp. 141–150. ACM Press, New York (1998)

    Chapter  Google Scholar 

  10. Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally sound symbolic secrecy in the presence of hash functions. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp. 542–552. ACM Press, New York (1991)

    Chapter  Google Scholar 

  13. Even, S., Goldreich, O., Lempel, A.: A randomizing protocol for signing contracts. Comm. ACM 28(6), 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  14. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Computer and System Sciences 28(2), 270–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. J. ACM 38(1), 691–729 (1991)

    MATH  MathSciNet  Google Scholar 

  17. Garcia, F.D., van Rossum, P.: Sound computational interpretation of symbolic hashes in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 33–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Herzog, J.: A computational interpretation of Dolev–Yao adversaries. Theoretical Computer Science 340(1), 57–81 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Janvier, R., Lakhnech, Y., Mazar, L.: Completing the picture: Soundness of formal encryption in the presence of active adversaries. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 172–185. Springer, Heidelberg (2005)

    Google Scholar 

  20. Kremer, S., Mazaré, L.: Adaptive soundness of static equivalence. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Mazaré, L.: Computationally sound analysis of protocols using bilinear pairings. In: WITS 2007, pp. 6–21 (2007)

    Google Scholar 

  22. Micciancio, D., Panjwani, S.: Adaptive security of symbolic encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 169–187. Springer, Heidelberg (2005)

    Google Scholar 

  23. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg (2004)

    Google Scholar 

  24. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attack. In: STOC 1990, pp. 427–437. ACM Press, New York (1990)

    Chapter  Google Scholar 

  25. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

    Google Scholar 

  26. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004), http://eprint.iacr.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Liqun Chen Yi Mu Willy Susilo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galindo, D., Garcia, F.D., van Rossum, P. (2008). Computational Soundness of Non-Malleable Commitments. In: Chen, L., Mu, Y., Susilo, W. (eds) Information Security Practice and Experience. ISPEC 2008. Lecture Notes in Computer Science, vol 4991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79104-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79104-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79103-4

  • Online ISBN: 978-3-540-79104-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics