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Abstract. A digital multi-coupon is similar to a paper-based booklet containing
k coupons that can be purchased from one vendor and later redeemed at a vendor
in exchange for services. Current schemes, offering privacy-protection and strong
security properties such as unsplittability of multi-coupons, address business sce-
narios with a single vendor and multiple customers, and require customers to
redeem coupons in some fixed order.

In this paper, we propose a multi-coupon scheme for federated environments
that preserves the security and privacy properties of existing schemes, as well
as their asymptotic communication and computation complexity. We define a
generic formal security model and show that our scheme meets the formal re-
quirements of this framework. Moreover, in contrast to previous solutions, we
allow customers to redeem their coupons in an arbitrary order.

Keywords: coupons, privacy, unlinkability, unsplittability, payment system, loy-
alty, federation.

1 Introduction

Coupons are the basis for successful business models and are widely used in practice.
Companies distribute (paper-based) coupons to customers for various marketing pur-
poses, like encouraging loyalty, providing discounts, setting up prepayment models,
and attracting new customers. A special variant are coupon booklets, where all coupons
are contained in a booklet and are only valid as long as they are attached to the booklet.
This ensures a property we call unsplittability: the single coupons cannot be redeemed
autonomously; instead, they can only be shared among customers by giving away the
entire booklet each time a coupon is spent.

We call coupon booklets (and their electronic equivalents) multi-coupons (MCs).
A vendor provides a customer with a new multi-coupon in the issue procedure. The
customer can then use the coupons from this multi-coupon in the redeem procedure
to pay the vendor. During redemption, the vendor verifies that the coupon is valid and
authentic, and provides the customer with the specified good or service. Each coupon
in a multi-coupon can be used only once. In the following, we denote by object the
good or service implied by a coupon. Any item that can be bought may become an
object in practice, e.g., clothes, songs, books, videos, tickets, and even services, such as
discounts, access to computer resources, etc.
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Multi-Coupons in a Vendor Federation. Until now, multi-coupons were proposed in
use cases with a single vendor. Hence, one approach to make MCs more user-friendly
is to make them usable in a more general scenario, where a federation of vendors is
involved. For instance, consider a cooperation between transportation companies, dif-
ferent cultural institutions, restaurants, and shops offering joint coupons to tourists who
can then visit any of the indicated places of interest, eat at the participating restaurants,
and buy goods from the listed shops at discount prices. Note that paper-based variants
of such cooperations exist in many cities (e.g., [11213]]) and enjoy popularity. The gen-
eral case is that tourists buy a special card which is accompanied with coupons offering
discounts. This card should be presented prior to using any of the coupons (i.e., coupons
are unsplittable).

Obviously, it would be more convenient if a tourist could buy the MC at any in-
volved vendor and would not be forced to go to a central place like the tourist infor-
mation. A trivial solution could be to connect each vendor to one central server which
issues the electronic MCs, but more intelligent solutions which allow the vendors to act
autonomously as much as possible are certainly preferrable. Moreover, there might be
several competing vendors in the federation that provide the same service, e.g., differ-
ent restaurants, where a customer could get a meal at a reduced price. In such cases, it
might be desirable that the vendor who actually provided the service — e.g., the restau-
rant which served the meal — obtains money for it. In our scheme, a vendor can prove
that a customer redeemed a coupon to him, and hence he could charge the coupon issuer.

We remark that the above scenario is just a use case where a digital multi-coupon
scheme maintained by a federation of vendors would be of potential interest, and that
the scheme designed in this paper is general and could be employed in different business
models through the specification of its object types.

Electronic multi-coupon schemes (MCSs) are in several ways superior to paper-based
schemes. Despite the lower production costs and the possibility to buy and generate them
over the Internet, they enable finer business models tailored to the different types of cus-
tomers. However, new and specific security considerations need to be taken into account.

Security and Privacy Considerations. In contrast to paper-based coupon booklets, it
is very easy to create a perfect copy of an electronic MC. Further, when dealing with
an MCS, we must also consider attacks in which different users collude and attempt
to cheat on vendors. Moreover, privacy and anonymity of customers become more im-
portant since the vendor may try to infer and store additional information about them
including purchase habits, gender, age, etc. This would harm privacy and allow client
profiling and price discrimination [17]. For optimal user privacy, vendors should not be
able to link different transactions to one user (i.e., unlinkability should be provided).
Unforgeability and unsplittability are essential properties of an MCS (see [SITOIT3]).
The users should not be able to forge coupons or share (“split”’) an MC in such a way
that several users can spend coupons from one MC independently. In the literature, weak
unsplittability (also called all-or-nothing sharing) has been proposed (see, e.g., [10]): a
user who wants to share a single coupon with someone else has to share the entire MC
and all the secret data associated with that MC. Our scheme fulfills a stronger definition,
called unsplittability (cf. [11]])): If two users share coupons from an MC, then if one of
them redeems, the second one cannot redeem any coupon from the same MC without
interaction with the first user, even if both users know the entire secret data. To support
business models where the vendor which provides the user with a service can charge
money from the issuer of the coupon, additional requirements must be met. During the
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redemption protocol, the issuer of the coupon must be identifiable, and other vendors
must be protected from being incorrectly held responsible for issuing this coupon. In
Section[3] we actually define two requirements, framing resistance (the requirement of
the issuer) and claimability (the requirement of the redeeming vendor).

Although payment issues are important for the deployment of an MCS in practice,
they cannot be completely solved by cryptographic techniques. Hence, these issues are
out of scope of this paper. Here, we assume that it suffices that a judge can execute an
algorithm Claim to verify that a coupon, issued by a given issuer, has been redeemed
to a given vendor.

Contribution. We introduce a new multi-coupon scheme deployable for a federation
of vendors. Our scheme provides unlinkability, unsplittability, unforgeability, framing
resistance and claimability. We introduce a formal security framework with definitions
of these properties in which we prove the security of our scheme.

Previous MCSs suffer from the problem that they either do not provide unsplittabil-
ity, or all the coupons in a multi-coupon have to be redeemed in sequential order (fixed
during issue). If an MCS is to be used with a federation of vendors, such a restriction
can be a strong limitation: imagine that the vendors want to offer an MC with coupons
for different types of goods. In that case, customers certainly would want to decide
themselves in which order they want to redeem their coupons. Hence, we need a non-
sequential MCS, where the coupons can be redeemed in arbitrary order. However, the
scheme of [11] offers nice features that we want to retain, in particular, coupon objects.
These allow to have different types of coupons in one MC. We improve and extend this
scheme in two important aspects: our scheme can be used by a group of vendors, which
also introduces new security requirements. Moreover, we do not require the order of
redemption of the single coupons to be fixed when the MC is issued. Furthermore, MCs
can be created and issued offline without any connection to the vendors at which the
coupons can be redeemed. For instance, this allows in practice to install a variety of
selling booths in the tourist card example mentioned above.

Redeem complexity (both computation and communication) is constant w.r.t. the size
k of the MC (i.e., the number of coupons it contains), and complexity of the protocol for
issuing MCs is linear in k, which is the best we can get when each coupon has individual
attributes (like coupon objects). If all coupons in an MC are the same (i.e., no coupon
objects are used), ideas from [6] can be used to further reduce the complexity.

Organization. First, we give an overview of our scheme, define general multi-coupon
schemes and describe our realization in Section2} In Section[3] we give a formal frame-
work with game-based formal definitions of the requirements, and provide sketches for
security proofs. We discuss related work in Section [l Finally, we conclude our article
in Section[3l Further details can be found in the extended version

2 Our Federated Multi-Coupon Scheme

2.1 Informal Description of a Multi-Coupon’s Lifecycle

In our scheme, a group of vendors V with common databases DB, DB’ (trusted by the
vendors) executes protocols with users I/ to issue and redeem coupons. The databases

! See http://www.trust.rub.de/home/publications
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are used only during the redeem protocol. A multi-coupon M contains & individual
coupons, which include, among other information, a coupon identifier «d. The coupons
are all cryptographically tied to M, which has an MC identifier mid and a freshness
identifier fid. To simplify the description below, we temporarily omit coupon objects
ob and the MC identifier mid.

In the Issue protocol, a user U obtains an MC from a vendor V' with one signature
on each individual coupon, and one signature validating the freshness fid, signed by the
issuing vendor V. The signatures on the individual coupons (on id) prevent U from
forging coupons, whereas the signature on the MC (on fid) ensures its freshness, which
is used to prevent splitting.

In the Redeem protocol, the user U redeems a single coupon from an MC to a ven-
dor V. For this, he has to prove knowledge of a signature on the single coupon and that
the MC is fresh. Double redemption of coupons is prevented by the vendor V’ through
a lookup in a central database DB of coupon identifiers. Similarly, V' queries the cen-
tral database DB’ of freshness IDs to verify the freshness of the MC. If the current
coupon id and freshness ID fid have not already been used, then they are inserted into
the corresponding database. Afterwards, the database DB sends a signature certpp
to the vendor V' certifying that V"’ is responsible for the redemption of this coupon.
V' will need this signature as an evidence to charge the coupon issuer. At the end of
Redeem, a new fid is generated and signed by V", so that this protocol can be executed
repeatedly, as long as there are coupons left in the MC.

After redemption, the Claim algorithm can be executed by any party to verify that a
user redeemed a coupon originally issued by a vendor V' to a vendor V’, and thus, that
V' is entitled to charge V for the corresponding coupon. The input to this algorithm
is the coupon ID id, a (non-interactive) proof of knowledge of a signature on id, and
the certificate certpp given by DB to V' during Redeem. The certificate is used to
prevent double charging. Note that the databases do not participate in this algorithm.

2.2 Components of a General Federated MCS

Basic Notation. For a finite set S, s € S denotes the assignment of an element sam-
pled uniformly from S to the variable s. Let Alg, be a probabilistic algorithm. By
outy «— Alg,(ina) we denote that the variable outy4 is assigned the output of Alg ,’s
execution on input ing. We denote by (Alg,(ina), Algg(ing)) a pair of interactive
algorithms with private inputs in4 and inp, respectively, and write (outs,outg) «—
(Alg,(ina), Algg(ing)) to denote the assignment of Alg,’s and Algy’s private out-
puts after their interaction to the variables out4 and outp, respectively.

Here, we adapt the basic framework from [11] to our scenario with a federation of
vendors. The involved parties are a set of vendors V and a set of users U/, where ny =
|V| denotes the number of vendors in the federation. We will refer to any particular user
simply by U, and V, V' will denote particular vendors. We assume that each vendor
V' has a unique identity /Dy which is publicly known. Common system parameters
for the cryptographic building blocks (like commitment and signature schemes) will be
omitted in the notation for better readability.

Definition 1 (Multi-Coupon Scheme). A multi-coupon scheme (MCS) for a feder-
ation of vendors V consists of a set of protocols and algorithms {Setup, Issue,
Redeem, Claim}:

Setup algorithm. (PK, {SK v, }1<i<n, ) «— Setup(1®, ny) is the (in general, dis-
tributed) initialization algorithm executed by the vendors once to generate one instance
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of the MCS, where k is the security parameter, ny is the number of vendors. It outputs a
public key PK (which includes 1% and k,ax, the maximum allowed number of coupons
per MC), and a set of secret keys { SK v, }1§i§nv.The vendors’ states are initialized to
the empty string.

Issue protocol. In order to obtain an MC with k coupons, U performs the following
protocol with avendor V : ((resy, M), res,) «— (Issue,(k, V, PK,oby,..., 0bk_1),
Issuey(k, SK v, obg, ..., 0bx_1)) where, from now on, the subindices u and v denote
user and vendor algorithms, respectively. The common input obg, . .., 0bx_1 specifies
coupon objects (individual attributes) for the k individual coupons in the MC that is to
be issued. The output flags res.,, res, € {acc,rej} indicate success or failure. Issue,
outputs res,, and a multi-coupon M, whereas Issue, only outputs res,,.

Redeem protocol. A multi-coupon M (issued by V) is redeemed to V' via the
protocol ((resy, M), (res,, crn, ob,w,s")) «— (Redeem, (M, m, PK), Redeem,(s,
SK /). The parameters to Redeem, are the multi-coupon M from which the user
wants to redeem a coupon, a specification m of the coupon to be redeemedd, and the
public key PK of the MCS. The vendor algorithm takes the vendors’ state s and the
private key of the redeeming vendor SK vy, as input. Redeem,, outputs an updated
multi-coupon M’ and a flag res,, just like in Issue, and Redeem, outputs a new state
s of the vendors, a unique coupon reference number crn, an object ob, a proof m that
a user redeemed a coupon to V' (with reference number crn and object ob, issued by
V), and a flag res,,.

Claim algorithm. To verify that a coupon with reference number crn issued by V
has indeed be redeemed to vendor V', the (public) algorithm Claim can be run to
verify a proof w, ie., res «— Claim(crn,ob,m, V' V). The result res is true if ™
proves that 'V issued a coupon with object ob that was redeemed to V' with reference
number crn; otherwise, res is false. crn is used to identify a redeemed coupon, i.e., it
can be noticed, when the same redeemed coupon is claimed twice.

Correctness (informal). Any MCS must fulfill the correctness requirement: if all partic-
ipants in the protocol are honest, each individual coupon from each MC that was issued
by any vendor can be redeemed successfully at any vendor (equal to or different from
the issuer), regardless of the order of redemption, i.e., a user can redeem any coupon
that she hasn’t spent yet at any time.

2.3 Building Blocks

Commitment Scheme (CS). We use the integer CS from [[7], based on the scheme
in [12]], with two bases g, h € QR,, (quadratic residues modulo n), and a special RSA
modulus n as a public key. A commitment to « has the form C,, = ¢g* - h”, where r is a
random value.

Proofs of Knowledge (PoK). We use a number of honest-verifier statistical zero-know-
ledge PoKs. By PoK{(Z1,...,%y) : R(Z1,...,&,)} we denote an interactive PoK,
where a prover proves to a verifier that she knows a witness (Z1, ..., Z,) (denoted by
tilded variables) such that relation R holds, and the verifier does not gain any useful
information beyond this assertion.

Proof of Equality of Representations. P proves that she is able to open two commit-
ments C; and C5 (for two possibly different instances of the commitment scheme), such

2 Details depend on the scheme; e.g., m could be the index in a list of all coupons in a multi-
coupon or an ID.
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that certain components of the openings are equal. For example, PoOKEqgRep{ (Z, 7,
§,7y) 1 C1 = g 957 A Co = 75" A& = 7} denotes the proof that the exponents & and
1y are equal.
Camenisch Lysyanskaya signature scheme (CLS). The CLS is a signature
scheme with efficient protocols based on the strong RSA assumption. The protocols
for this scheme allow signing committed values, and proving knowledge of a signature
(see below). The following description is done in the context of our scheme.

CLS.setup(1”). The signer S generates a special RSA modulus n = pg, such
that n has size ¢,, := 2k, where k is a security parameter. Then he chooses numbers
a,b,c €g QR,,, where a, b are called bases. The public key CLS px is (a,b, ¢, n), and
the secret key CLS gx is the prime p.

CLS.Sign(z, CLS s ). To sign a message = € [0;2), the signer chooses a ran-
dom prime e of size ¢, := ¢, + 2, arandom number s of size at most {5 := £, + {,,, + ¢,

where ¢ is another security parameter, S computes v — (a®b*c)®  (mod n), and
outputs (e, s, v).

CLS Verify(z,o, CLS pk). For (e, s,v) := o, the algorithm tests if v° = a”b°c
(mod n), z € [0;2), s € [0;2%), e is £, bits long, and outputs true or false.

The signature allows the following useful protocols:

Signature on a committed value and PoK of this signature [7]]. Signature gener-
ation is a protocol from [[7] between a user U and a signer S, who knows the se-
cret key CLSsk. Let CLSpx := (a,b,c,n) be the corresponding public key. The
common input to U and S is a commitment C,, for which U (supposedly) knows
an opening (x,r,) : C, = a*b"™. At the end of the protocol U obtains a signature
o := (e, s,v) on z, while x is statistically hidden from S. We denote this protocol as:
o — SigonCommit{U(x,r,),S(CLSsk)}(Cy).

For a commitment C’,, U can prove knowledge of (z,7),e,s,v) [7], such that
(x,r!) is an opening of C”, and (e, s,v) is a valid signature on x, where = and o
are hidden by the zero-knowledge property of the protocol. We denote this protocol as:
POKSigOnCommit{(,7,, ) : C', = a®b™ A CLSVerify(#,d, CLSpx)}.

This signature scheme can be extended to sign message tuples (x1,...,x) by in-
troducing k bases a; [[7]]. The extended scheme for k-tuples will be denoted by CLSk.
The protocols above can be extended to support multiple messages, and selective mes-
sage disclosure. E.g., abusing notation, we denote by SigOnCommit{ U(Z1, Fy, ),
S(CLS3 sk )} Cy, , 2, x3) a protocol to generate a signature on a 3-tuple (1, z2, x3),
where the message z; is blinded by a commitment C,, and two messages x2 and
xg are disclosed in clear. Similarly, by PoKSigOnCommit{(Zs,7y,,0) : Cpy =
az*b™s A CLS3.Verify((z1, xa,%3),5, CLSS px)} we denote the corresponding
PoK that U knows a signature o on a tuple (x1, x2, x3), where 21 and x5 are disclosed
to the verifier, but x3 is kept blinded. Again, the variables with ~ are kept secret.

Non-interactive proofs and signatures of knowledge. Using a cryptographic hash
function, the PoKs described above can be turned into non-interactive PoKs by the
Fiat-Shamir heuristic [13]]. We add the prefix NI- (“non-interactive”) to the PoKs to
indicate that a non-interactive proof is used instead of an interactive protocol, e.g.,
NI-PoKSigOnCommit to denote a non-interactive proof of knowledge of a signa-
ture on a commitment. If additional data (a “message”) is hashed, the NI-PoK becomes
a signature on this message (as in [19]) and is called a signature of knowledge (SoK).
Since the actual protocol remains the same, we use the same notation with simply ap-
pending the message (as in NI-PoKSigOnCommit{...}(m)). The security of SoKs
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can be shown in the random oracle model. In practice, it is assumed that this heuristic
is secure, as long as the hash function which is used is cryptographically strong. For a
more general and formal treatment of SoKs, see [9].

2.4 Concrete Construction

Overview. A multi-coupon M of size k < k.« consists of its identifier mid, a fresh-
ness identifier fid, a signature ¢’ on the pair (fid, mid), and a list of k individual
coupons, where kp,,x is the maximal number of coupons an MC can contain. Each
individual coupon (id, 0b, o) is specified by a coupon identifier id, a coupon’s object
ob (i.e., the good or service represented by the couporﬂ), and a signature o on the tuple
(id, ob, mid). Depending on the business model, the object IDs in an MC could either
be chosen by the user, or they could be determined by the issuer. We model object IDs
as common input to the issue protocol, leaving this decision to the concrete application.

We require that all signatures and non-interactive proofs in the protocols are always
verified by the recipient. If the verification fails, the protocol is aborted, and the respec-
tive party outputs rej (subsequently, verification steps will be omitted). All public keys
and parameters for the underlying protocols are known to all participants in the scheme
(e.g., the federation of vendors could maintain a server with a directory of all public
keys). The coupon reference number crn from our formal definitions is implemented
by a unique ID id; for each individual coupon.

Setup. For the setup of the MCS, the vendors have to create keysﬂ: one common CLS2
key pair (PKpeq, SKpeq) for the federation, where all vendors know the private key,
and one CLS3 key pair (PKy, SKy ) for each individual vendor V. Moreover, the
vendors have to create two empty common databases DB (for coupon IDs) and DB’
(for freshness IDs), where all vendors can create new entries (of course, this can be
implemented by two tables in one database). Every vendor is allowed to insert entries
into the databases, but no vendor is allowed to delete them. DB possesses a key pair
(PKpp, SKpp) of an arbitrary signature scheme, e.g., RSA, to issue certificates to
vendors which inserted coupon IDs.

Remark. In this instantiation, the public key mentioned in Def. [I] consists of PK g
and PK v,; the secret key from Def.@lincludes SKp.q and SK v,.

Issue. The Issue protocol is shown in Fig. [Il In step 1, the multi-coupon identi-
fier mid is selected by the vendor, whereas the freshness ID fid, and IDs for the in-
dividual coupons id; are chosen by the user. The vendor only obtains commitments
Cfidy> Cidgs - - - Cia,_, to the values chosen by the user. In step 2, the user receives a
signature o, on (mid, fid,) with the secret key of the federation SKp.q, and in step 3,
he obtains signatures o; on (Cq4,, mid, ob;) with the signing key SKy of the issuer.

Redeem. The Redeem protocol for the (j + 1)-th redemption from a multi-coupon,
where 0 < j < k — 1, is shown in Fig.[2l During the first Redeem from a multi-coupon
(i.e., j = 0), the freshness ID fid,, and corresponding signature o{, from Issue is
used and updated; in subsequent redemptions, the freshness ID and signature from the
previous execution of Redeem are used and updated. In step 1, the user blinds mid
by commitments (otherwise, the vendor could use mid to link transactions), and sends
the data of the coupon he wants to redeem (id;, 0b;, fid j), together with the ID of the
issuer IDy, to the vendor V'. In step 2, U proves that the two commitments to mid are

3 The vendors must publish an encoding of coupon’s objects as integers.
* We do not use group signatures, because coupon issuers should be identifiable.
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Common input: public keys PKy = (a3, as2,as,b,¢,n), PKp.q = (&1,&2,5, é,n),
number of single coupons k, object identifiers ob;, i = 0,...,k — 1

User’s input: —

Vendor’s input: private keys SKy = p, SKpeq = P

User U Vendor V
Step 1:
fidg €r (0;2%); 7jia, €r (0;2); mid €p (0; 20m);
Cha, — @deo briido s < mid

for eachi=0,...,k—1do
id; €p (0;2°);
Tid; €r (0;20);

idiprig, .
Cig, «— ai""b"; Chiags Cidgs -+ » Cidy s
end for; >
Step 2:
o - SigOnCommit{ U(fidy, rfa,), V(SKred)}(Cfd,, mid)
-
Step 3:
for eachi=0,...,k—1do
0 — SigOnCommit{ U(id;,7:a,), V(SKyv )} Cia,, mid, ob;)
<+—>
end for;
return (mid, fidy, g, {(idi, 03) bo<i<k); return accept;

Fig. 1. Issue Protocol

actually commitments to the same number. In step 3, the user proves knowledge of the
signature o;, and the vendor obtains a signature of knowledge 7’ that allows him later to
prove that this coupon was redeemed to him. In step 4, the user proves knowledge of a
signature 0’; on (fid;, mid). The vendor has to verify that both id; and fid; are fresh by

quering the databases (i.e., he checks that these values are not yet in DB and DB’), and
inserts these entries. After insertion, the database DB signs ¢d; and sends the signature
to V'. To prevent races between vendors, which open the door to some attacks, only
one vendor at any time is allowed to “query and insert”, as an atomic operation.

In step 5, U chooses a new random freshness ID ﬁdj 41 for this MC and sends a
commitment to fid; to V’. At the end of the protocol (in step 6), the user obtains a
new freshness signature o’ 41 for this MC. The vendor sets m (7', certpp, Crmid)»
and returns (id;, ob;, ).

A malicious user cannot abuse Cﬁd to obtain signatures with SKp.4 on arbitrary
messages, because the second part of the signed message is proven to be a valid com-
mitment to mid. All signatures with SKr.q on such messages will always be interpreted
as freshness signatures, thus this protocol cannot be used as signature oracle. For effi-
ciency reasons, the NI-PoKs and NI-SoKs could all be combined into one NI-SoK.

Claim. The deterministic C1aim algorithm verifies the SoK that a vendor V'’ obtained
during the Redeem protocol and the certificate given by DB to V. It uses only public
information and hence can be run by anyone, for example, by a judge in case of dispute.
Double charging is prevented because a vendor will only pay back once for each coupon
identifier. The vendor V' can always charge the issuing vendor unless DB generates
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Common input: public keys PKy = (a1, az,a3,b,¢,n), PKpeq = (a1, a2, b, ¢,m)
bases g, h, g, h for internal use of PoKSigOnCommit protocols
User’s input: single coupon (id;, mid, Obj,,ﬁdj,()'i,o';') issued by vendor V, issuer’s ID IDy
Vendor’s input: private key SKzeq = p, databases DB, DB’
User U Vendor V'

Step 1:
T'mid Tmtd €R (0 2[ )

mid i

A i IDy ,id;, Conig, 0bs, fid;, C!

1nzd

led — ag

!

mid

Step 2: - o - -

NI-PoKEqRep{ (mid, mid | Fmid, Pia) : Coia = afdo™mie A CL L = a5 brma A mid = mid/}

Step 3: .

NI-PoKSigOnCommit{(mid, Frnia,5:) : Conia = agilymie A CLSS. Verl:fy((zd17 mid, ob ),0i, PKv)}(IDy)
7'« output of step 3;

— Q.

Alevie{;j}(s1g0nCornmlt{ mid, 7,4, & G5) : Crig = A"ﬁdi)ﬂmd A C’LS,Q.Verify((ﬁij7 mzd),aj, PKpea)}

Step 5: certDBVH insert id; into DB;
fidj i1 €r (0; 26m); Tfid;,, €R (0;26); insert fid; into DB’;
CﬁdH] — d{id1+lz;7'ﬁ'i]+1 ; Cﬁdﬁl _

Step 6:

O’;-+1 — SigOnComnit{ U (fid; 1,7 fa,,,, mid, 7)), V/(SKFEd)}(Cﬁd]+1 ,Clid)

J+17?

return (fid;;1,075,4); m— (7', certpp, Cmia); return (id;, ob;, m);

Fig. 2. Redeem Protocol

Claim(id, ob,m, V', V) :
parse 7 as (7', certpr, Cmid);
verify certpp w.rt. id, PKpg;
verify @' w.r.t. id, ob, Cpnia, PKv, IDy;

Fig. 3. Claim Algorithm

two certificates for the same coupon identifier. However, this misbehavior can always
be identified.

Efficiency. The communication (and computation) complexity of the Issue protocol
is linear in the number & of individual coupons in the multi-coupon to be issued. Corre-
spondingly, the size of the MC data is also linear in k. The Redeem protocol is constant
w.r.t. to k. The operations performed by DB and DB’ (search, insert and sign) do not
depend on the size k of the MCs (but, of course, on the security parameter ), and they
should not impact the efficiency unless the communication between the vendors and
the databases is slow. If coupon objects are not necessary, ideas from [6]] could be used
to obtain logarithmic complexity (in k) for Issue, and also logarithmic size of the
MC data. Compared to the MCS from [11]], one additional SigOnCommit protocol
has to be run instead of a local signature generation during Issue. In the Redeem
protocol, two additional IDs (V and fid j) are sent to the vendor in the first step, and we
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need an extra round to send a commitment to the vendor. Another difference is that we
use non-interactive versions of the protocols during Redeem, which slightly increases
efficiency — but this could also be done in the MCS from [11]].

3 Security Framework and Analysis

Here, we generalize the adversarial model from to a federation of vendors. The
security requirements are defined by games, and it can be shown that our scheme meets
these requirements. We only present some proof sketches and refer the reader to the
full version of this paper for more details. An adversary is a p.p.t. algorithm .4, which
can play the role of either a collusion of vendors and users, or only of a group of users.
W.lo.g., we let the adversary be specified by a sequence of algorithms (e.g., A =
(A1, Aa, A3)). Honest parties are assumed to communicate over secure channels.

We consider two types of users (resp. vendors): honest and corrupted users (resp.
vendors). Users (resp. vendors) belonging to the set of honest users (resp. vendors)
execute algorithms of the MCS if requested by A, but remain honest otherwise. A has
full control over the corrupted users and vendors, and he is provided with their previous
protocol views. Similar to [[14], we allow A to interact with the system through a set of
queriesﬁ handled by an inferface, which partially simulates the MCS, executes protocols
with A, and records certain user’s or vendor’s activities. Note that the interfaces do not
restrict 4 in any way — they control the actions of the honest parties on behalf of A.
Correctness of the scheme can be easily verified (proof omitted).

Framing resistance and claimability. During the redemption protocol, the original is-
suer of the coupon must be identifiable (to allow the redeeming vendor to claim money
from the issuer), and other vendors must be protected from false claims. It must be en-
sured that a vendor who issued an MC can always be held responsible for all coupons
from this MC. We break down this property into two requirements: (1) framing resis-
tance: a collusion of vendors and users must never be able to claim that another vendor
issued a coupon with a specific object, when he didn’t; and (2) claimability: an honest
vendor who redeemed a coupon must always be able to claim money for it.

Interface /;. In the games defining “claimability” and “framing resistance”, the ad-
versary A plays the role of a coalition of all users and has the capability to corrupt
vendors.

Counters ctrCy o (initially 0) for each coupon object ob are defined for each ven-
dor V, counting the coupons with object ob, that were issued by V. The following
queries are provided to A.

I.Issuey(V,k, 0bg,. .., 0bg_1). If k € [1; kmax] and V is an honest vendor, the
Issue, algorithmis executed. The counter for each coupon object obis increased by the
number of times 0b occurs in the MC issued by V', i.e., VA € [0;k —1]: ctrCy op, ++.

I .Redeem, ( V', V). If V' is an honest vendor, the Redeem, protocol is executed
for V', i.e., A wants to redeem a coupon (issued by V) to V.

I.corrupt(V). A receives all secrets of V (and V is removed from the set of
honest vendors).

In the FrameGame (see Fig.H), A can interact with the system via the interface 7.
A outputs the identity V' of the vendor he wants to “frame” (in order to win this game,

> Like in existing schemes, queries must not be executed concurrently, which simplifies model
and construction.
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ClaimGame(A, k,ny):

FrameGame(A, k,nv): (PK,{SK v, }1<i<ny) <
(PK {SK v, }1<i<ny) < Setup(1™,ny);
Setup(1”, ny); (V',V,s4) — Al' (1%, PK);
(V,o0b, CRN,IT) — A" (1%, PK); if V' corrupted
if (V uncorrupted A [CRN| > ctrCy o5 A return unbroken;
(Vern € CRN:3(w, V') € II: (Resa, (resy, crn, ob,m, s")) «—
Claim(crn, ob,m, V', V) = true)) (A2(s4), I1.Redeem,(V', V));
return broken; if (res, = acc A
else return unbroken; Claim(ern, ob,m, V', V) = false)

return broken;
else return unbroken;

Fig. 4. The games FrameGame and ClaimGame

A has to choose an uncorrupted vendor), an object ob, and a set of coupon reference
numbers CRN with a corresponding set I of pairs (m, V') of proofs that V' was
involved in the redemption of a coupon with object 0b issued by V. If Claim succeeds
for all of these proofs and there are more elements in CRN than coupons (with object
ob) issued by V (i.e., |[CRN| > ctrCy o), A wins the game, because then A must
be able to claim coupons V' did not issue. (Of course, all elements of the set must be
distinct —i.e., A cannot “replay” the same crn multiple times).

Definition 2 (Framing resistance of an MCS). An MCS is resistant against framing
if there is no p.p.t adversary A that can win the FrameGame in Fig. M (i.e., Frame-
Game(A, k,ny) = broken for some number of vendors ny, > 1) with non-negligible
probability (in k).

Theorem 1 (Framing resistance). Assuming the security of CL signatures against ex-
istential forgery, the proposed MCS is resistant against framing, i.e., for all p.p.t adver-
saries A and for all ny, > 1, Pr[FrameGame(A, k,ny) = broken| is negligible (in k)
in the random oracle model.

Proof (sketch). Assume a successful adversary A which breaks FrameGame with
non-negligible probability. From that, we construct an algorithm B that, given a sig-
nature oracle for an instance of the CLS3 signature scheme, produces an existential
forgery for this instance.

B has to simulate the FrameGame towards A in the random oracle model. To do so,
B has to guess which issuer V' will be “attacked” by .A. The CLS$ signature oracle is
used by B for V’s signatures — the keys for the other vendors and for the federation are
generated honestly by the respective algorithms. If A corrupts a vendor different from
V, B delivers the corresponding secret key to A. If A corrupts V, the simulation fails.
Assuming that A corrupts all vendors but one, the probability to guess the right vendor
is 1/ny. In [[7]], it is shown how to simulate the building blocks for our protocols.

In the Issue and Redeem protocols, it can be assumed that B can extract all secrets
(by rewinding) for each PoK and SoK from A (it is shown in [[7] that efficient knowledge
extractors exist for the sub-protocols we use). Since rewinding can be done for all sub-
protocols independently, 15 is still efficient.

When B executes Issue for V, 3 stores o; together with the signed tuple (id;, mid,
ob;) (where id; is obtained by knowledge extraction). This information is used to iden-
tify a forged CL signature: B extracts the secrets from all SoKs that are returned by .4
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(in the set II in the FrameGame). The condition | CRN| > ctrC'y op in the Frame-
Game ensures that there are more distinct coupon IDs id; than signatures for coupons
with object 0ob have been queried by V. Therefore, one of the NI-SoKs 7 does not
correspond to a coupon issued by V' and A must have produced a forgery of a CL sig-
nature. 53 can identify the forgery using the data stored during Issue, and outputs it
as the required existential forgery of a CLS3 signature. Of course, this only works, if
the vendor challenged by the adversary is actually the vendor V' guessed by B at the
beginning of the simulation.

Since the probability of an adversary to forge a CL signature is negligible, so is the
probability of A to win the FrameGame. O

To break the ClaimGame (see Fig.H)), A successfully redeems a coupon to an uncor-
rupted vendor V', but V'’ cannot claim money for it (i.e., the C1laim algorithm fails).
In the first phase, A; can interact arbitrarily with the honest vendors via /7. He must
output an issuer V of a coupon (possibly corrupted) and an uncorrupted vendor V',
and an arbitrary state s 4 for the second phase. To win the game, A, must be able to
redeem a coupon, allegedly issued by V, to V', but Claim must fail for this coupon.
Ag’s output Res 4 is discarded.

Definition 3 (Claimability of an MCS). An MCS is claimable if there is no p.p.t adver-
sary A := (A1, Ag) that can win the ClaimGame in Fig.H (i.e., ClaimGame(A, k,
ny) = broken for some number of vendors ny, > 1) with probability > 0.

Theorem 2 (Claimability). The proposed MCS provides claimability, i.e., for all p.p.t
adversaries A and for all ny, > 1, Pr[ClaimGame(A, k,ny) = broken] = 0.

Proof (sketch). The checks in the Claim algorithm are a subset of the checks per-
formed in Redeem by the vendor. Therefore, the condition in the ClaimGame that V'
accepts, but Redeem fails, is a contradiction (i.e., A can never win). O

Unforgeability and unsplittability.

No coalition of users should be able SplitGame(A, k,ny):

to redeem more coupons than have
been issued by the vendors. More-
over, multi-coupons should be un-
splittable (cf. [111]): We require that
if a user Uy shares an MC with a
user U7, as soon as one user redeems
a single coupon, the other one can-
not redeem any more without inter-

(PK,{SK v, }1<i<n, ) « Setup(1”,ny);
(s, Vo Viyooo, VI ) — A (17, PK)

it K < ctrMy
return unbroken;
for A + 0 to K do:
(resa,resy) «—
(Az(s), I1.Redeem,(V, V;));
if (resy # acc)

return unbroken;

acting with the user who redeemed
return broken;

first (note that sharing can always be
achieved by copying all the data).

In the games, we have to restrict Fig. 5. The game deﬁning unsphttablhty (Spl’Lt—
the queries that are available to A: he Game), wher(? I7 is the interface I; without
is not allowed to corrupt vendors, be- COTTUPt queries
cause a vendor could issue as many
coupons as he likes — and hence “unforgeability with corrupted vendors” would make
no sense. Moreover, we consider unsplittability to be a requirement of the entire fed-
eration. Therefore, we do not need to model corruptions: We assume that in the games
defining unforgeability and unsplittability, all users but no vendors are corrupted.
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Furthermore, we have to count the difference between the coupons (separately for
each object ob) a vendor V issued, and the number of coupons (issued by V', with
ob) that were already redeemed, i.e., the number of coupons issued by V with ob-
ject ob that are available to the adversary. Thus, a counter ctrDy o, (initially 0) is
introduced for each issuer V', which is increased during issue, and decreased after
a successful Redeem (possibly at a different vendor V). For the definition of un-
splittability, it is important to know how many MCs issued by V that still contain
redeemable coupons the users may have. In an unlinkable MCS, this cannot be done
precisely; therefore, the MC counter ctrMy (initially 0) is just an upper bound on
the users” MCs (with valid redeemable coupons). To count the MCs the users might
have, ctrMy is increased by one whenever V issued a coupon. After successful re-
demption, the MC counter is adjusted if the number of coupons issued by V' that are
still available to A is smaller than the number of MCs (issued by the same vendor):
ctrMy «— min(ctrMy, ctrDy ).

Interface I;. The modified interface I; without Corrupt queries, but with counters
ctrMy and ctrDy ,p is denoted by I7.

Intuitively, to win the splittability game (see Fig. B)), A has to create more (in the
game: K +1) “shares” than he has MCs (at most ctr My < K), which can be redeemed
independently from each other. The state of A, is reset after each Redeem to the state
s that was output by Aj; i.e., information gained in one execution of Redeem is not
available in the other executions.

Definition 4 (Unsplittability of an MCS). An MCS is unsplittable if there is no p.p.t
adversary A that can win the SplitGame in Fig. [ (i.e., SplitGame(A, k, ny) =
broken for some number of vendors ny > 1) with non-negligible probability (in k).

Theorem 3 (Unsplittability). Assuming the security of CL signatures against existen-
tial forgery, our MCS is unsplittable, i.e., for all p.p.t adversaries A and for all ny, > 1,
the probability Pr|SplitGame(A, k,ny) = broken| is negligible (in k) in the random
oracle model.

Proof (idea). We can show unsplittability by a reduction, similar to the one in the proof
of Theorem[T} Assuming an adversary A against SplitGame, we construct an adversary
B against the security of the CL signature scheme (i.e., B will produce an existential
forgery of a CL signature). 55 has to simulate the interface I7, and play the SplitGame
with A. To do so, B has black-box access to signature oracles for the CLS2 and the
CLS3 signature schemes (these oracles can be used in the simulation because vendors
cannot be corrupted). If A wins the game, 5 has to come up with an existential forgery
of one of the signature schemes. The simulation proceeds like in the proof of Theorem[T]
and it can be proven that the counter ctr My ensures that a forgery occurs, which can
be extracted from the adversary by rewinding. In this way, B produces an existential
forgery of one of the CL signature schemes. O

In the unforgeability game, the adversary A can interact with the system via I7, and
he has to output the identity of an arbitrary vendor, an object ob of his choice. If more
coupons (with object 0b) issued by this vendor have been redeemed than the vendor
originally issued (i.e., ctrDy o, < 0), A wins. Due to space restrictions, we omit the
formal definition, theorem, and proof (which are analogous to unsplittability).
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Unlinkability. To ensure privacy and anonymity of the customers, we require that the
vendors should not be able to link a Redeem procedure of a customer to the corre-
sponding Issue procedure, nor to another Redeem procedure where the customer
used the same MC. Unlinkability for one user has to be provided against a collusion of
vendors and other users.

Informally, unlinkability is achieved because the vendor’s knowledge about elements
of a single coupon depends on the actual procedure. During Issue, id and fid,, are
hidden, whereas mid, o, 06 are known to the vendor. During Redeem, id and fid are
disclosed to the vendor, but mid, o, o, are hidden. fid; (0 < j < k) is hidden from
the vendor during the j-th run of Redeem, but disclosed during the (j + 1)-th run; o
(0 < j < k) is known to the vendor during the j-th run of Redeem, but hidden during
the (j + 1)-th run. The objects ob are known to the vendor during both Issue and
Redeem. If a certain coupon object is unique to a user, this could be used for linking.
Hence, the formal definition has to exclude “trivial linking” by objects. But if there are
more users with coupons of a given object, it cannot be used for linking. We assume
that in a system with many users, for each object there should be several users with a
corresponding coupon. Hence, privacy should be preserved, for practical purposes.

For a formal definition, theorem, and proof (which are quite similar to [11]]), we refer
the reader to the extended version of this paper.

4 Related Work

Syverson et al. [20] introduced the concept of unsplittability in the context of unlinkable
serial transactions to discourage sharing, and suggested an extension of their scheme to
implement coupon books. Later, Chen et al. [10] described the properties that a privacy-
protecting MCS must provide, and proposed an unforgeable, unlinkable, and weakly
unsplittable scheme. However, their construction is less practical because redemption
complexity is linear in k (i.e., the number of coupons in the MC).

More recently, Nguyen [13] addressed some disadvantages of [10], and defined a
security model for MCSs, followed by an efficient construction based on a verifiable
pseudorandom function and bilinear groups. Its issue and redeem complexity is constant
w.r.t. k, it offers the same security properties as in [10], and adds a new feature to
revoke MCs. One drawback the schemes from is that every issued MC must
contain the same number of coupons, i.e., k is a system parameter fixed for all MCs.
This limitation, as pointed out in [13]], can be overcome in both schemes at the cost of
efficiency, by extending the issue protocol in a way that MCs with fewer than k coupons
can be issued. Another drawback of these schemes is that they do not provide coupon
objects (or coupon types [8]]), and they support only one vendor.

Finally, a privacy-protecting MCS scheme with strong protection against splitting
has been proposed in [T1]. In this scheme, the number & of coupons in an MC can
vary with different MCs. Moreover, coupon objects are supported, and the proofs for
the security (unforgeability, unlinkability, and unsplittability) are sketched. However,
all coupons in an MC must be redeemed in a sequential order that has to be fixed during
the issue protocol, and only a single vendor is considered.

As explained in [I0/T3], most related schemes (e.g., e-cash, digital credentials) can-
not be employed as privacy-protecting unsplittable MCSs because they have different
usage patterns [18/4]], are inefficient in this setup [16]], or lack at least one of the re-
quired properties [5], in particular unsplittability. Some e-cash systems (e.g., [6]) can
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be used as unlinkable or at least anonymous MCSs (cf. [8]). However, they are at most
weakly unsplittable. Although [6] provides logarithmic issue complexity (and size) in
k, it cannot support individual attributes per coupon. If coupon objects would be intro-
duced, the issue complexity (and multi-coupon size) would also be linear in k, as in our
scheme, but would not provide unsplittability.

5 Conclusion and Future Work

In this paper, we proposed a generic security model for multi-coupon schemes, suitable
for a federation of vendors. We designed an efficient scheme where coupons can be
redeemed in arbitrary order, and which is provably secure in this model. Future work
may focus on dynamic aspects of the scheme, considering the case where vendors join
and leave the federation, or on the design of more efficient schemes.
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